
BOI 2013
Rostock, Germany
April 8 – 12, 2013 b i

Day 2
SPOILER
brunhilda

Page 1 of 3

Brunhilda’s Birthday (Spoiler)

Let d(n) denote the number of calls Wotan needs to end the game when n children are left and let
M = {k1, . . . , km} be the set of primes Wotan can choose from.

1 Dynamic Programming

For 20 points it is enough to evaluate the obvious formula

d(n) = 1 + min
k∈M

d
(
(n− (n mod k)

)
(1)

using dynamic programming. Then all queries can be answered by simple lookup.

To handle the case d(n) =∞ it suffices to check whether

n ≥ lcm(k1, . . . , km) =
∏
k∈M

k

(since if n is not divisible by k after calling k less children will be over, but if n is at least the
product p of all numbers Wotan can call, after any call at least p children will remain) or to simply set
d(n) = ∞ for n 6= 0 before evaluating the above formula. Runtime is Θ(mn+Q) in both cases; an
implementation can be found in file brunhilda_trivial.cpp.

2 Greedy Approach

Let us denote the predecessor, i.e. the number of children that are left after Wotan made a perfect call,
of n as π(n). If there are multiple solutions, let π(n) be the minimum of this numbers. The main
point of the solution is the following

Proposition 1. Wotan can call the numbers greedily, i.e. π(n) = mink∈M (n− (n mod k)).

This fact is—once stated—quite obvious, but it can be established rigorously using the following

Lemma 2. π and d are both monotonically increasing in n.

Proof. We show this for any interval [0..N ] by induction on N . Without loss of generality let us
assume that d(N) < ∞. The case N = 0 is trivial. Otherwise we have π(N) ≤ N − 1 as stated
above and thus π(N) = mink∈M

(
N − (N mod k)

)
. Since (N − 1) mod k ≥ (N mod k) − 1 for

any N, k we have π(N) ≥ π(N − 1). Thus

d(N) = d(π(N)) + 1 ≥ d(π(N − 1)) + 1 ≥ d(N − 1)

because of the monoticity of d in [0..π(N)] ⊆ [0..N − 1].



BOI 2013
Rostock, Germany
April 8 – 12, 2013 b i

Day 2
SPOILER
brunhilda

Page 2 of 3

To show that this suffices for subtask 2 we need to establish an upper bound for d(n). For simplicity
let kmax denote maxM .

Lemma 3. Let n = n′kmax and d(n) <∞. Then d(n) ≤ 2n′.

Proof. We use induction on n′. Again there is nothing to show for n′ = 0. For n′ ≥ 1 we have
π(n) < n by assumption and thus

π(π(n)) ≤ π(n−1) ≤ (n−1)−
(
(n−1) mod kmax) = (n−1)−(kmax−1) = n−kmax = (n′−1)kmax

by monotocity of π. Using the monoticity of d we get thus d(n) = d(π(π(n))) + 2 ≤ d((n′ −
1)kmax) + 2 = 2(n′ − 1) + 2 = 2n′.

Once again using monoticity we get

Corollary 4. If d(n) <∞, then d(n) ≤
⌈

2n
kmax

⌉
. Especially we have d(n) = O(n/m).

Using the prime number theorem stating that the nth prime is asymptotically as big as n lnn one can
decrease this bound further toO

(
n/(m logm)

)
, however, this is not required directly for the solution.

Since we can calculate π(n) primitively in O(m) we can answer one query in O(m + n) time. This
suffices for subtasks 1 and 2 and is implemented in brunhilda_singlequery.cpp.

3 DP over inverse function

Let d(−1) denote the inverse function of d, i.e.

d(−1)(k) = max{n : d(n) ≤ k}. (2)

Since π(k + kmax) > k and thus d(k + kmax) > d(k), we have

d(−1)(k + 1) ≤ d(−1)(k) + kmax. (3)

Thus having calculated d(−1)(x) for x ∈ [1..k] one can calculate d(−1)(k + 1) using binary search in
the interval [d(−1)(k), d(−1)(k)+kmax]. It further suffices to check for given x in this interval whether
π(x) ≤ d(−1)(k) (instead of really calculating d(x), which would be too slow). So one can calculate
this function for every needed value of k in time O(n+m) (here the additional log-factor mentioned
before comes in handy).

With this function one can answer any query in logarithmic time using binary search or simply fill an
array d[1..n] of all values in timeO(n) and then answer queries inO(1). Both suffices to get full score;
an implementation of the second technique can be found in brunhilda_alternative.cpp.



BOI 2013
Rostock, Germany
April 8 – 12, 2013 b i

Day 2
SPOILER
brunhilda

Page 3 of 3

4 Model solution: Fast evaluation of the predecessor function

Instead of minimizing π(n) we can simply maximize the term we subtract (since n is fixed), let’s call
it µ(n, k) = n mod k. If we plot some those functions for variable n and some k ∈ M the image
consists of a set of straight lines of slope 1 and “breaks”.

(4)

Thus for µ∗(n) := maxk∈M µ(n, k) we get the same simple characteristic. If we plot all those
functions—both µ and µ∗—and scan through this image from right to left the optimal k can only
change when a break occurs. Thus if we evaluate µ∗ at all those breaks of all the µ-functions we can
simply fill in the rest of them by subtracting one from the next one at the right.

For any break point n, we have that µ∗(n− 1) is k − 1 for some k ∈ M . Thus to initialize our array
M [1..n] of values of µ∗ it suffices to set M [ak − 1] = k − 1 for any a and increasings k ∈ M . This
needs ∑

k∈M

n

k
= n

∑
k∈M

1

k
≤ n

m∑
i=1

1

k
= nHm = O(n logm)

steps (messing with analytic number theory one can reduce this bound further to O(n log logm)) but
with really good constant factor.

Afterwards one can calculate π(n) on the fly in constant time and thus use the simple DP approach
from the beginning to get full score. This is implemented in file brunhilda.cpp.

An implementation using a priority queue to evaluate µ∗ using the same ideas above is expected to get
something around full score, too, depending on the data structure used (set/priority_queue/segment
tree). A program featuring the STL priority_queue, which also gets full score, can be found in file
brunhilda_pq.cpp.


