
Vim

For any string s, let f(s) denote the minimum number of key presses Victor needs to do
to remove all “e”s from s.

For any string s with some letters underlined, let g(s) denote the minimum number of
key presses Victor needs to do so that the cursor is at every underlined letter at least
once.

Lemma 1. f(l1s1 e . . . e︸ ︷︷ ︸
n2

l2s2 . . . e . . . e︸ ︷︷ ︸
nk

lksk) = 2(n2 + · · ·+nk)+g(l1s1 . . . lksk) if l1, . . . , lk

are letters different from “e” and n2, . . . , nk ≥ 1.

Proof. Let t = l1s1 e . . . e︸ ︷︷ ︸
n2

l2s2 . . . e . . . e︸ ︷︷ ︸
nk

lksk and s = l1s1 . . . lksk.

“≤” Let o1, . . . , op be some operations on s that visit each letter at least once. At
the first point, when the cursor is at the letter li (for 2 ≤ i ≤ k), insert ni times the
operations hx. This yields a sequence of 2(n2 + · · ·+ nk) + p operations on t that delete
all the “e”s.

“≥” Victor has to do the operation x exactly n2 + · · ·+ nk times (once for each “e”).
To move the cursor to some letter “e”, he has to move it to the following letter and then
issue h. Therefore, the cursor visits the letters l1, . . . , lk at least once.

Using Lemmas 1 and 2, it only remains to find g(s) for strings s not containing the
letter “e” (with some letters underlined). This is an instance of the travelling salesman
problem, but the corresponding graph has some additional structure described by the
following two lemmas.

Lemma 2. If the cursor is at some position p and Victor does some sequence of opera-
tions h, o1, . . . , ok with o1 6= h (or k = 0), then Victor can instead do a shorter sequence
of operations which visit the same letters, apart from at most the letter at position p−1.

Proof. Let l be the letter at position p. If o1 6= fl (or k = 0), then Victor can do the
operations o1, . . . , ok. Otherwise, he can do the operations o2, . . . , ok.

Lemma 3. Assume Victor does the minimum number of key presses to visit each un-
derlined letter in s at least once. Then Victor will not do operation h more than once
with the cursor at the same position.

Proof. Otherwise, Victor does the operation h two times with the cursor at the same
position and such that one of the following both operations is different from h. Therefore,
Victor could shorten his sequence of operations according to Lemma 3.
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It follows, that Victor gets the minimum number of key presses like in the following
picture where each underlined character (represented by a dot in the picture) is contained
in one of the intervals spanned by the horizontal arrows from right to left (which can
have length 0) and each such arrow ends at an underlined letter.

This observation yields an O(N2S) solution: It is easy to find a suitable recurrence
relation for the minimum number r(a, b) of key presses to visit all underlined letters up
to position a with the cursor ending up at position b.

An O(NS2) solution works roughly as follows:

For simplicity, assume that operation fc moves the cursor infinitly far away to the right
if the character c does not appear anywhere to the right of the current cursor position.
Apparently, this does not change the answer.

Let p(a, c) be the minimum number of key presses before or after which the cursor is to
the left of a such that the cursor lands on or passes position a exactly once and with
operation fc.

Let q(a, c, d) be the minimum number of key presses before or after which the cursor is
to the left of a such that the cursor lands on or passes position a exactly three times:
the first time with operation fc, the second time with operation h and the third time
with operation fd.

Let si be the i-th character of the string, let

ui =

{
∞, if the i-th character is underlined

0, otherwise

and let

κc,d =

{
∞, c = d

0, c 6= d

Then the following recurrence relations hold:

p(a+ 1, c) = min(p(a, c) + κc,sa + ua,

p(a, sa) + 2,

q(a, sa, c) + κc,sa ,

q(a, sa, sa) + 2)

q(a+ 1, c, d) = min(p(a, c) + 3 + κc,sa ,

p(a, sa) + 5,

q(a, c, d) + 1 + κc,sa + κd,sa ,

q(a, c, sa) + 3 + κc,sa ,

q(a, sa, d) + 3 + κd,sa ,

q(a, sa, sa) + 5)
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Then, we have g(s) = p(N, k) − 2 where N is an (imaginary) position directly to the
right of the last character of s and k is some (imaginary) letter not contained in s.

Remark. The condition that the first character of Victor’s document ist not an “e” is
in fact not necessary due to the following lemma.

Lemma 4. f(e . . . e︸ ︷︷ ︸
n times

s) = n+ f(s) for any n ≥ 0.

Source code

#inc lude <s t d i o . h>
#inc lude <algor ithm>
us ing namespace std ;

const i n t NMAX = 70000;
const i n t S = 11 ;

char l i n e [NMAX+10] ; // the input
i n t Nin , N = 0 , r ew r i t e c o s t = 0 ;
// input with cha ra c t e r s converted to numbers from 0 to S−1 and ’ e ’ removed
i n t t ext [NMAX+2] ;
bool must [NMAX+2] ; // whether we have to reach t h i s cha rac t e r

i n t dp1 [NMAX] [ S ] ;
i n t dp2 [NMAX] [ S ] [ S ] ;

i n t main ( ) {
s can f (”%d %s ” , &Nin , l i n e ) ;
bool nextmust = f a l s e ;
f o r ( i n t i = 0 ; i < Nin ; i++) {

i f ( l i n e [ i ] == ’ e ’ ) {
r ew r i t e c o s t++;
i f (N) {

r ew r i t e c o s t++;
nextmust = true ;

}
} e l s e {

must [N] = nextmust ;
nextmust = f a l s e ;
t ex t [N] = l i n e [ i ]− ’a ’ ;
N++;

}
}
f o r ( i n t s = 0 ; s < S ; s++) {

dp1 [ 0 ] [ s ] = 1E9 ;
f o r ( i n t t = 0 ; t < S ; t++)

dp2 [ 0 ] [ s ] [ t ] = 1E9 ;
}
dp1 [ 0 ] [ t ex t [ 0 ] ] = 0 ;
f o r ( i n t i = 1 ; i <= N; i++) {

f o r ( i n t s = 0 ; s < S ; s++) {
i n t h = 1E9 ;
i n t p = text [ i −1] ;
i f (p != s && ! must [ i −1])

h = min (h , dp1 [ i −1] [ s ] ) ;
h = min (h , dp1 [ i −1] [ p ]+2) ;
i f (p != s )

h = min (h , dp2 [ i −1] [ p ] [ s ] ) ;
h = min (h , dp2 [ i −1] [ p ] [ p ]+2) ;
dp1 [ i ] [ s ] = h ;
f o r ( i n t t = 0 ; t < S ; t++) {

h = 1E9 ;
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i f (p != s )
h = min (h , dp1 [ i −1] [ s ]+3) ;

h = min (h , dp1 [ i −1] [ p ]+5) ;
i f (p != s && p != t )

h = min (h , dp2 [ i −1] [ s ] [ t ]+1) ;
i f (p != s )

h = min (h , dp2 [ i −1] [ s ] [ p ]+3) ;
i f (p != t )

h = min (h , dp2 [ i −1] [ p ] [ t ]+3) ;
h = min (h , dp2 [ i −1] [ p ] [ p ]+5) ;
dp2 [ i ] [ s ] [ t ] = h ;

}
}

}
p r i n t f (”%d\n” , dp1 [N ] [ S−1]+ rewr i t e c o s t −2);
r e turn 0 ;

}
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