
Analysis: GAM
Game
HISTORY:
• v. 1.01: 2008.04.08, WTYC - small corrections
• v. 1.00: 2008.03.31, SzW - first version of this document

dokument systemu SINOL 1.7.2

1 Introduction

The problem is a typical game theory problem. Since both players have the same distance to the goal (call
that distanceD - this is the distance betweenA’s andB’s starting point), it’s obvious that both players should
move on a shortest path. Otherwise at leastD + 1 moves would be required, in which case the other player
always wins. Since playerA moves first, he will always win unless playerB during the moveD/2 manages
to reach the same square as playerA (in which caseB will win). Note that if D is odd,A always wins.

Because players should move on the shortest path it is easy tofind all fields where each player can be
after exactlyp moves. To do this we can use BFS algorithm twice to find distance fromA’s andB’s starting
point to all other fields. Afterp moves, playerA can be on squares where the distance toA’s starting point is
p and the distance toB’s starting point isD− p (and vice versa for playerB). This finding is the basic notice
that has to be made to correctly solve this problem because only in this way it is possible to find the order in
which all states that describe A’s and B’s position should beprocessed.

2 Correct solution - time O(n3), memory O(n2)

This solution uses a simple dynamic programming. LetLAk be the list of squares where playerA can be after
k moves and letLBk be the similar list but for playerB. Let Tki, j betrue if after D/2− k moves playerA has
a winning strategy if his piece is on the square that isi-th on theLAD/2−k list and player B’s piece is on the
square that isj-th on theLBD/2−k list. If B has a winning strategy thenTki, j should befalse. If D is even then
list LAD/2 should be equal toLBD/2. We can easily notice thatT0i, j is true if and only if i 6= j.

To calculate values in matricesT for k = 1,2, ..,D/2 we have to notice thatA has a winning strategy if
he can make such a move that after this moveB can make only such moves after whichA has still winning
strategy. More formally, letNextAk,i be the list of squares belonging toLAD/2−k+1 where the playerA can
move from thei-th square on theLAD/2−k list. Let NextBk, j be the similar list for the playerB. If for some
i′ ∈ NextAk,i for all j′ ∈ NextBk, j the value ofTk−1i′, j′ is true thenTki, j is true, otherwise it isfalse.

Using the above rule we can calculateT for k = 1,2, ..,D/2 and the playerA has winning strategy in
whole game if and only ifTD/21,1

is true (if the lists are 1-based). The only problem is to quickly findNextA

andNextB lists. For some square(x,y) where some player can be afterk moves, using results from BFS,
we can easily find all squares(x′,y′) where this player can be afterk + 1 moves. The problem is to find the
position of(x′,y′) on theLk+1 list. But because each square can be on only one list when we add some square
to some list we can also store in some array position of this square on the appropriate list.

In the worst caseD = O(n). Then eachL list can haveO(n) elements and calculating eachTk takesO(n2)
time. So forD/2 matrices it givesO(n3) time complexity. In the best caseD = O(n2) and then eachL list has
constant number of elements so eachTk can be calculated in constant time and the time complexity isO(n2).
According to this the overall time complexity isO(n3).

L lists useO(n2) memory. AllTk arrays in the worst case useO(n3) memory but there is no need to store
them all. We need only matrices for current and previousk so it takesO(n2) memory. According to this the
overall memory complexity isO(n2).

1



This solution was implemented in C++ (gam.cpp), C (gam0.c) and Pascal (gam1.pas).

3 Wrong solution - time O(n3logn), memory O(n3)

This solution is similar to the correct solution but insteadof LA, LB lists andT array it stores values of states
in some dictionary whereT (ax,ay,bx,by) is true if and only if A has winning strategy when pieceA is on the
(ax,ay) square and pieceB is on the(bx,by) square. The implementation of the dictionary adds a factor of
logn to the time complexity. Because it has to store all states it usesO(n3) memory.

This solution can score 60% of points (it solves first 9 tests of 15). It was implemented ingams0.cpp file.

4 Wrong solution - time O(n3), memory O(n4)

This solution is similar to the previous one but instead of dictionary it uses 4-dimensional array. It improves
speed toO(n3) but the memory used isO(n4).

This solution can score 40% of points (it solves first 6 tests of 9) and was implemented ingams1.cpp file.

5 Heuristic 1

The heuristic is very simple. OutputA if D is odd,B otherwise. It scores 0 points. It is implemented in
gamb0.cpp file.

6 Heuristic 2

This solution divides the rectangle which hasA’s andB’s srarting points in opposite corners into four quarters.
Then it calculates the number of black squares in the quarters next toA’s and next toB’s starting points. If
there are more black squares next toB then it outputsA because the playerB has less possibilities to move his
piece during first half of the game and playerA can use it to avoid meetingB.

This solution scores 0 points. It is implemented ingamb1.cpp file.

7 Heuristic 3

It combines Heuristic 1 and 2. IfD is odd it outputsA otherwise it uses Heuristic B.
This solution scores 0 points. It is implemented ingamb2.cpp file.

8 Time and memory limits

The limit for n was set to 300 because for this value:
• the most important - it is easy to divide solutions that useO(n2) and more memory,

• the time of execution for larger tests is long enough to find too slow solutions.
The memory limit was set to8 MB to divide solutions that useO(n2) and more memory.

2



9 Tests

Because the answer in this problem is binary, tests were grouped together. Each test with number greater than
1 consists of 3 test files with suffix:

• a - one test without any black squares and two tests with small number of black squares (about 3%).

• b - one test with the longest possible route - player has to go tothe right to the end of the board then
two squares down, to the left to the end of the board, two squares down and again to the right, etc. After
this test there are two tests similar to the first one but with some random, black squares removed. On
average one square from each horizontal wall and from one of three horizontal walls where removed.

• c - one test with large number of black squares (about 20%).

In each test case playerB starts in right, bottom corner. But for each test case two variants where created. In
the first variant playerA starts in the top, left corner, in the other it starts one square to the right. In the result
one of these variants will have even (non-trivial) and one have odd length of the shortest path.

In total it gives 3 files with 7 tests, each in two variants, that is 14 tests in each group. So for each group
there are 214 = 16K possible answers and that is enough to eliminate programs that return random answer.

• gam0.IN (1 sek.) Example test from the problem description

• gamocen1-4.IN (1 sek.) Simple tests for contestants

• gam1.IN (1 sek.) 10 small test cases that checks boundary conditionsand correctness

• gam2-6.IN (1 sek.) Small tests that should be solved by each algorithm

• gam7-9.IN (1 sek.) Larger tests that can be solved only by algorithms that usesO(n3) memory or less

• gam10-15.IN (6 sek.) Large test that should be solved only by correct solution

Time limits where measured on Core 2 Duo 2.2 GHz CPU. In general when setting time limits the correct
solution should pass all tests,gams0 solutions should pass first 9 tests (but here key a resource ismemory
because it is not possible to separateO(n3) andO(n3logn)). Thegams1 solution should pass only first 6 tests.

10 Changes in problem description

There were following changes in the problem description:

• The possibility to put more test cases in one file was added because the answer is binary so a lot of tests
is required in each group.

• Information how many scores can be earned for different instances size was added.

• The example test was changed.

11 Remarks

The author wrote in his problem description that there exists a solution that works inO(n4) time that checks
all states. But I think that such solution does not exists because it can not know in which order states should
be searched.

3



12 List of work

The following work was done:

• This document was written.

• Example test, 4 tests for contestants and 15 groups of tests were prepared.

• Document with description of solutions for contestants waswritten.

• Correct solution in three languages, two slow solutions andthree bad solutions were implemented.

• Small changes in problem description were added.

• Input generator and verifier were implemented.

4


