
Analysis: ELE
Elections
HISTORY:
• v. 1.01: 01.04.2008, WTYC – small corrections
• v. 1.00: 23.03.2008, Mi.Pi. — writing the analysis

dokument systemu SINOL 1.7.2

1 Introduction

This task is a simple variation of discreet backpack problem. Instead of items packed in a backpack we
have parties with certain numbers of seats in a parliament toform a coalition. In this problem we do not
have to find out, if a given amount of votes can be obtained, butwhat is the maximal size of a possible,
non-redundant coalition. Non-redundancy makes the problem a little bit harder — during dynamic algorithm
one has to somehow ensure that constructed coalition will not be redundant, which can occur when trying to
apply standard methods.

The solution of this problem is considering the parties in non-ascending order of number of seats. It is a
simple observation that if one breaks the minority when adding a party to a coalition consisting only of larger
parties, the new coalition will be proper and non-redundant. Therefore, after sorting the sizes of parties we
use the standard dynamic algorithm to consider subsets of parties which do not have majority and record only
’skips’ over the half.

This ’trick’ makes the problem more interesting, but still it is rather standard and easy.

2 Jury’s solution

Firstly, let us observe that a coalition is non-redundant ifwithout a member party with the smallest number of
seats it hasn’t got the majority in the parliament. Obviously every non-redundant coalition has this property.
Moreover, if exclusion of the smallest party breaks the majority, then exclusion of each larger will break
as well, so each coalition with this property will be indeed non-redundant. Going further, all non-redundant
coalitions are created from subsets not having majority by adding a party not larger than any already included.

In the first step of the algorithm the results of parties are tobe sorted in non-ascending order of the number
of seats. As there is at most 300 parties, we can do this using sorting algorithms with complexityO(n2), or
use template ones in C/C++ instead. Now we can assume that ifa1,a2, . . . ,an are the number of seats of
parties thena1 ≥ a2 ≥ . . . ≥ an.

In the second step we apply dynamic programming approach. Let s be the total number of seats in the
parliament, computed during input reading. We will use two arrays with size[0..s]: partyUsed[i] and
partySkip[i]. Let us assume that we have already considered the firstk largest parties. InpartyUsed[i]
we will store the number of the smallest party of a subset of considered parties, which has exactlyi seats in to-
tal. If such a subset does not exist,−1 will be stored. InpartySkip[i] the size of party frompartyUsed[i]
shall be recorded. It will be useful further to reconstruct the optimal coalition. The information in those two
arrays will be stored only for subsets of parties not having majority and for non-redundant coalitions.

It is easy to observe that such a data structure can be maintained during considering the parties one after
another. Firstly,partyUsed is filled with−1. If we considerk-th party, we add its number of seats to all values
not exceeding⌊ s

2⌋, obtained in previous steps. Thus we construct new subsets of parties, each including this
new party. We record all the new possible numbers of seats built in this way, changing appropriate value in
partyUsed to k and inpartySkipto corresponding number of votes. The values having majority are being

1



recorded in this step, but they are not included in the set of values, to which we add the considered number
of seats. The observation in the first paragraph ensures us that all such number of seats will be results of
non-redundant coalitions, as the parties were considered in non-ascending order of number of seats.

In order to quickly find out, which numbers of seats have been obtained so far, we store them in an
additional container — for example a vector or an array. If a new number of seats below majority has been
constructed, we simply add information about it to this structure. In the beginning, only 0 is included.

In the third step we are to reconstruct the optimal coalition. Firstly we seek its number of seats. We can do
it by finding the largest index with nonnegative value inpartyUsed, or by remembering it during performing
the previous step. Then we are able to reconstruct the answer. We begin with a variablebest set to the found
index and decrement it bypartySkip[best] while recording usage ofpartyUsed[best]. After reaching
0, the whole coalition has been recorded and is ready to be printed. This algorithm is correct, because parties
with no seats will never be used, as they are always redundant.

The first step of the algorithm, implemented efficiently, hastime complexityO(n logn). The second
one takesO(n · s) time — for each ofn parties we consider at most⌊ s

2⌋ recorded values. The last step
has complexityO(n), as the answer cannot be larger. For reasonable data set we have s ≥ n, so the time
complexity of the whole algorithm isO(n logn+n · s) = O(n · s). It is noteworthy that the usage of inefficient
sorting algorithms does not worsen the time complexity.

The memory complexity is clearlyO(s) because of usage of arrays of this size in dynamic programming.
The implementation of this algorithm is included in files:
• ele.cpp — implementation in C++,

• ele1.c — implementation in C,

• ele2.pas— implementation in PASCAL.

3 Other solutions

3.1 Efficient solutions

Algorithm 1. (100 points) This is in fact a bit less efficient implementation of jury’s solution. We do not use
a container to store visited states — instead, during considering a single party, the whole arraypartyUsed[]
is read to find sets of parties with new numbers of seats. The time and memory complexities are obviously
the same, but this implementation runs a bit slower due to senseless processing of the wholepartyUsed[] in
early states of the algorithm.

The implementation can be found in filesele3.cpp (C++) andele4.pas (PASCAL).

3.2 Inefficient solutions

Algorithm 1. (40 points) The first inefficient algorithm is brutal backtracking with complexity O(n · 2n).
For every subset of parties (2n of them), we check if a coalition can be formed out of them and if it is non-
redundant (which takes usO(n) time). The solution is straightforward and scores only guaranteed set of
points.

The implementation can be found in fileseles1.cpp (C++) andeles2.pas (PASCAL).

Algorithm 2. (50 points) The algorithm is a brief variation of the first algorithm. While recurrently con-
structing subsets, we compute their number of votes and check only those having majority. Moreover, after
achieving more than a half of all the seats, we do not need to continue the search, as every further coalition
will be redundant. We also cut the search if we are sure that even including all the remaining parties will not

2



result in having the desired majority. These implementation tricks make the algorithm a bit faster, but it is
still exponential. However, it passes two more tests.

The implementation can be found in fileseles3.cpp (C++) andeles4.pas (PASCAL).

Algorithm 3. (75 points) This algorithm attempts to apply standard dynamic programming, but in a inefficient
way. Firstly, we observe that a coalition will be non-redundant if excluding the smallest party breaks its
majority. In the algorithm, for every party we assume it to bethis smallest one. From larger ones we try to
obtain a subset with the biggest possible number of seats, but not exceeding the half of all the seats. If we
add the assumed minimal party, we will form a maximal non-redundant coalition with the chosen party as the
smallest one. In order to do this, we use standard dynamic programming approach using arrayspartySkip[]
andpartyUsed[], but considering only parties with at least so many seats as the assumed minimal one. In
addition, we perform the search only if the total number of seats claimed by those parties, including the
assumed one, is more than the half of the parliament. Only if this condition is satisfied, a coalition can be
formed. The maximal coalition is the best one found in any of the described steps.

The time complexity of this algorithm isO(n2 · s) — for each party we run the whole dynamic algorithm
with complexityO(n · s).

The implementation can be found in fileseles5.cpp (C++) andeles6.pas (PASCAL).

3.3 Incorrect solutions

Algorithm 1. (0 points) The first heuristic algorithm sorts the parties in descending order of number of seats.
Then, starting from every party it tries to grab the biggest possible parties until a coalition can be formed. The
formed coalition will surely be non-redundant from the samereasons as in the jury’s solution. The algorithm
runs inO(n2) time, but it assumes that the optimal coalition is formed by asequence of consecutive parties
in order of number of seats. This assumption is obviously nottrue.

The implementation can be found in fileeleb1.cpp (C++).

Algorithm 2. (35 points) This is a randomized version of the first inefficient algorithm. It randomly chooses
many subsets of parties and finds out, which of them form a non-redundant coalition. The best considered
coalition is being outputted. For small tests the algorithmruns much like the deterministic version, as there is
not much subsets to consider and the chance of finding the bestone as well is quite big. However, for bigger
tests the algorithm doesn’t find even a subset able to form a non-redundant coalition, not to mention the best
one.

The implementation can be found in fileeleb2.cpp (C++).

Algorithm 3. (0 points) This algorithm tries to solve problems in the first incorrectalgorithm. Once more the
parties are sorted, and we begin a procedure of grabbing biggest parties starting from each party. If inserting
a new party into a set of already grabbed doesn’t break the minority, we grab it. Otherwise we try to grab
it, see if a new non-redundant coalition is larger than previously one found and store it if needed. Then we
continue the algorithm as if we did not grab the considered party.

The algorithm runs inO(n2) time and checks a bit more coalitions than the first algorithm. However, it is
still incorrect.

The implementation can be found in fileeleb3.cpp (C++).

Algorithm 4. (0 points) This algorithm is an attempt to apply a standard dynamic programming approach
not without previously sorting the parties. As a result, formed coalitions are merely redundant.

The implementation can be found in fileeleb4.cpp (C++).

3



4 Constraints

The constraint of the number of parties (1≤ n ≤ 300) is left unchanged. Instead of introducing a bound for a
number of seats of each party, the whole number of seats has been bounded by 100000. The combination of
those two constraints make it easy to differ efficient solutions from inefficient ones, while not bounding result
of each party leaves much more flexibility in testing contestants’ solutions. Furthermore, no changes have
to be applied to the jury’s solution, as its time complexity depend only on these two bounded variables. It is
noteworthy that a lower bound for the number of seats has beenintroduced — it has to be positive, because
for zero number of seats the problem has no sense.

The memory limit has been set to standard 32Mb — the memory matters are not important in this task.
The time limit has been set to 1s. — inefficient solutions are significantly exceeding it, while for efficient
ones there is no problem in fitting into.

It is guaranteed that correct but inefficient solutions, performing well for not above 20 parties, will score
at least 40% of points. The constraint has been chosen in order to give even the most brutal, exponential
back-tracking algorithms a number of points for correctness.

5 Tests

The following tests have been prepared (s is the total number of seats in the parliament):

• ele0.IN (1 sek.) sample test from the problem statement,n = 4,s = 10

• ele1ocen.IN (1 sek.) simple small test,n = 12,s = 2048

• ele2ocen.IN (1 sek.) simple small test,n = 8,s = 28

• ele3ocen.IN (1 sek.) simple small test,n = 5,s = 24

• ele4ocen.IN (1 sek.) simple large test,n = 300,s = 45150

• ele1.IN (1 sek.) small test,n = 6,s = 156

• ele2.IN (1 sek.) small test,n = 11,s = 43

• ele3.IN (1 sek.) small test,n = 12,s = 79

• ele4.IN (1 sek.) small test,n = 13,s = 3272

• ele5.IN (1 sek.) small test,n = 14,s = 11592

• ele6.IN (1 sek.) small test,n = 16,s = 75981

• ele7.IN (1 sek.) small test,n = 18,s = 86130

• ele8.IN (1 sek.) small test,n = 20,s = 52361

• ele9.IN (1 sek.) small test,n = 26,s = 22041

• ele10.IN (1 sek.) small test,n = 27,s = 37395

• ele11.IN (1 sek.) medium test,n = 45,s = 97154

• ele12.IN (1 sek.) medium test,n = 48,s = 99588

4



• ele13.IN (1 sek.) medium test,n = 72,s = 49306

• ele14.IN (1 sek.) medium test,n = 110,s = 15936

• ele15.IN (1 sek.) medium test,n = 100,s = 47236

• ele16.IN (1 sek.) large test,n = 250,s = 84948

• ele17.IN (1 sek.) large test,n = 270,s = 99979

• ele18.IN (1 sek.) large test,n = 300,s = 72267

• ele19.IN (1 sek.) large test,n = 300,s = 79669

• ele20.IN (1 sek.) large test,n = 300,s = 99945

Most of the tests are based on random choice of results of the parties from a certain interval. This method
of test data generation appears to be quite effective against heuristic incorrect algorithms as well as inefficient
ones.

The contestants are provided with tests[1−4]ocen. They are very simple examples and, traditionally, all
incorrect solutions perform on them quite well.

The main test set are tests 1−20. Each of them is worth 5 points.
Tests 1− 8 haven ≤ 20 and are worth exactly 40% of points. Tests 1− 10 can be passed by solutions

with exponential complexity, however to fit into the limit intests 9 and 10, the algorithm has to be a bit
more sophisticated. Tests 11−15 represent medium size of test data and can be solved by algorithms with
complexity a bit worse than jury’s. Tests 16−20 are the largest ones, passable only by efficient solutions.

6 Changes in the problem statement

A constraint concerning the number of seats of each party hasbeen replaced by a sentence ’You may assume
that the total number of seats in the parliament will be positive and lower or equal to 100000.’.

A sentence concerning guaranteed points for inefficient solutions has been added to the Input section.
Reasons for those changes are discussed in section ’Constraints’.

7 Remarks

The task is rather easy. It is a standard example of dynamic programming approach. A few ’tricks’ are used
inside, but still there is nothing ’new’ in the general manner. In spite of this, the task can be regarded as an
interesting proposition for an easy or medium problem for the contest.

The time limits have to be adjusted to the system on which the contestants’ solutions will be judged. The
1 second limit is recommended, as on my computer it differs inefficient solutions from efficient ones, but on
other architecture the performance of the algorithms mightbe slightly slower or faster. The third inefficient
algorithm should solve tests 16−20 at least 2−3 times longer than the limit.

8 List of work done

• Creation of this document,

• creation of the test set,

5



• 3 implementations of efficient algorithms in C/C++ and 2 in PASCAL,

• 3 implementations of inefficient algorithms in C++ and 3 in PASCAL,

• 4 implementations of incorrect algorithms in C++,

• implementation of a program verifying the correctness of input data,

• implementation of a program judging the contestant’s solutoin,

• testing of the programs and setting the limits.

6


