Analysis: ELE
Elections

HISTORY:
eVv.1.01: 01.04.2008, WTYC — small corrections
e Vv.1.00: 23.03.2008, Mi.Pi. — writing the analysis

dokument systemu SINOL 1.7.2

1 Introduction

This task is a simple variation of discreet backpack problénstead of items packed in a backpack we
have parties with certain numbers of seats in a parliamefdrto a coalition. In this problem we do not
have to find out, if a given amount of votes can be obtainedwihat is the maximal size of a possible,
non-redundant coalition. Non-redundancy makes the pnokléttle bit harder — during dynamic algorithm
one has to somehow ensure that constructed coalition wib@oedundant, which can occur when trying to
apply standard methods.

The solution of this problem is considering the parties in4ascending order of number of seats. Itis a
simple observation that if one breaks the minority when agldi party to a coalition consisting only of larger
parties, the new coalition will be proper and non-redund@herefore, after sorting the sizes of parties we
use the standard dynamic algorithm to consider subsetstid¢pahich do not have majority and record only
'skips’ over the half.

This 'trick’ makes the problem more interesting, but stiiki rather standard and easy.

2 Jury’s solution

Firstly, let us observe that a coalition is non-redundawttiiout a member party with the smallest number of
seats it hasn't got the majority in the parliament. Obvigweslery non-redundant coalition has this property.
Moreover, if exclusion of the smallest party breaks the mjothen exclusion of each larger will break
as well, so each coalition with this property will be indeashfredundant. Going further, all non-redundant
coalitions are created from subsets not having majorityduljreg a party not larger than any already included.

In the first step of the algorithm the results of parties ateteorted in non-ascending order of the number
of seats. As there is at most 300 parties, we can do this ueitigg algorithms with complexit@(n?), or
use template ones in C/C++ instead. Now we can assume thata, ..., a, are the number of seats of
parties thera; > ax > ... > ay.

In the second step we apply dynamic programming approachs lhe the total number of seats in the
parliament, computed during input reading. We will use tways with sizg[0..s]: partyUsed[i] and
partySkip[i]. Let us assume that we have already considered théfiasgest parties. IpartyUsed[i]
we will store the number of the smallest party of a subset néiered parties, which has exadtieats in to-
tal. If such a subset does not exist] will be stored. Irpart ySki p[i] the size of party fronpart yUsed][i]
shall be recorded. It will be useful further to reconstriet bptimal coalition. The information in those two
arrays will be stored only for subsets of parties not havirgamity and for non-redundant coalitions.

It is easy to observe that such a data structure can be nragdteiring considering the parties one after
another. Firstlypart yUsed is filled with —1. If we considek-th party, we add its number of seats to all values
not exceeding 3], obtained in previous steps. Thus we construct new subbptsties, each including this
new party. We record all the new possible numbers of sealfsibudhis way, changing appropriate value in
partyUsed to k and inpar t ySki pto corresponding number of votes. The values having mgjarg being

recorded in this step, but they are not included in the setibfes, to which we add the considered number
of seats. The observation in the first paragraph ensuresatisittsuch number of seats will be results of
non-redundant coalitions, as the parties were considaredn-ascending order of number of seats.

In order to quickly find out, which numbers of seats have begained so far, we store them in an
additional container — for example a vector or an array. |Be&wmumber of seats below majority has been
constructed, we simply add information about it to thisatiwe. In the beginning, only 0 is included.

In the third step we are to reconstruct the optimal coalitkinstly we seek its number of seats. We can do
it by finding the largest index with nonnegative valugant yUsed, or by remembering it during performing
the previous step. Then we are able to reconstruct the angvednegin with a variablbest set to the found
index and decrement it byar t ySki p[best] while recording usage qfart yUsed[best]. After reaching
0, the whole coalition has been recorded and is ready to bheegli This algorithm is correct, because parties
with no seats will never be used, as they are always redundant

The first step of the algorithm, implemented efficiently, liase complexityO(nlogn). The second
one takesO(n-s) time — for each ofn parties we consider at mo$§ | recorded values. The last step
has complexityO(n), as the answer cannot be larger. For reasonable data setves han, so the time
complexity of the whole algorithm i®(nlogn—+n-s) = O(n-s). It is noteworthy that the usage of inefficient
sorting algorithms does not worsen the time complexity.

The memory complexity is clearl®(s) because of usage of arrays of this size in dynamic programmin

The implementation of this algorithm is included in files:

e ¢l e. cpp — implementation in C++,

e el el.c —implementationin C,

e ¢l e2. pas— implementation in PASCAL.

3 Other solutions

3.1 Efficient solutions

Algorithm 1. (100 points) This is in fact a bit less efficient implementation of jury>ion. We do not use
a container to store visited states — instead, during cenisig a single party, the whole arrpgrt yUsed]]
is read to find sets of parties with new numbers of seats. Tine &ind memory complexities are obviously
the same, but this implementation runs a bit slower due teedess processing of the wheler t yUsed[] in
early states of the algorithm.

The implementation can be found in filelse3. cpp (C++) andel e4. pas (PASCAL).

3.2 Inefficient solutions

Algorithm 1. (40 points) The first inefficient algorithm is brutal backtracking witbraplexity O(n- 2").
For every subset of parties(®f them), we check if a coalition can be formed out of them dritdi$ non-
redundant (which takes u3(n) time). The solution is straightforward and scores only gngged set of
points.

The implementation can be found in filelses1. cpp (C++) andel es2. pas (PASCAL).

Algorithm 2. (50 points) The algorithm is a brief variation of the first algorithm. Whrecurrently con-
structing subsets, we compute their number of votes anckabrdy those having majority. Moreover, after
achieving more than a half of all the seats, we do not needrtiraee the search, as every further coalition
will be redundant. We also cut the search if we are sure that excluding all the remaining parties will not

result in having the desired majority. These implementatitcks make the algorithm a bit faster, but it is
still exponential. However, it passes two more tests.
The implementation can be found in filelses3. cpp (C++) andel es4. pas (PASCAL).

Algorithm 3. (75 points) This algorithm attempts to apply standard dynamic progrargnbut in a inefficient
way. Firstly, we observe that a coalition will be non-redantif excluding the smallest party breaks its
majority. In the algorithm, for every party we assume it tothis smallest one. From larger ones we try to
obtain a subset with the biggest possible number of seatsidiexceeding the half of all the seats. If we
add the assumed minimal party, we will form a maximal nondresthnt coalition with the chosen party as the
smallest one. In order to do this, we use standard dynamgranaming approach using arrgyes t y Ski p[]
andpartyUsed[], but considering only parties with at least so many seats@assumed minimal one. In
addition, we perform the search only if the total number a@tseclaimed by those parties, including the
assumed one, is more than the half of the parliament. Onhisfdondition is satisfied, a coalition can be
formed. The maximal coalition is the best one found in anyhefdescribed steps.

The time complexity of this algorithm i®(n? - s) — for each party we run the whole dynamic algorithm
with complexityO(n- s).

The implementation can be found in filelses5. cpp (C++) andel es6. pas (PASCAL).

3.3 Incorrect solutions

Algorithm 1. (0 points) The first heuristic algorithm sorts the parties in descegdialer of number of seats.
Then, starting from every party it tries to grab the biggestgible parties until a coalition can be formed. The
formed coalition will surely be non-redundant from the saeesons as in the jury’s solution. The algorithm
runs inO(n?) time, but it assumes that the optimal coalition is formed sgquence of consecutive parties
in order of number of seats. This assumption is obviouslytnet

The implementation can be found in fidéebl. cpp (C++).

Algorithm 2. (35 points) This is a randomized version of the first inefficient algaritHt randomly chooses
many subsets of parties and finds out, which of them form aredondant coalition. The best considered
coalition is being outputted. For small tests the algoritiims much like the deterministic version, as there is
not much subsets to consider and the chance of finding th@bests well is quite big. However, for bigger
tests the algorithm doesn’t find even a subset able to forrna@dundant coalition, not to mention the best
one.

The implementation can be found in fid€eb2. cpp (C++).

Algorithm 3. (0 points) This algorithm tries to solve problems in the first incorr@gorithm. Once more the
parties are sorted, and we begin a procedure of grabbingstigarties starting from each party. If inserting
a new party into a set of already grabbed doesn’t break thenitynwe grab it. Otherwise we try to grab
it, see if a new non-redundant coalition is larger than pnesty one found and store it if needed. Then we
continue the algorithm as if we did not grab the consideretypa

The algorithm runs if©(n?) time and checks a bit more coalitions than the first algoritHimwever, it is
still incorrect.

The implementation can be found in fid€eb3. cpp (C++).

Algorithm 4. (0 points) This algorithm is an attempt to apply a standard dynamic fanogning approach
not without previously sorting the parties. As a resultnied coalitions are merely redundant.
The implementation can be found in fdeeb4. cpp (C++).

4 Constraints

The constraint of the number of parties<{In < 300) is left unchanged. Instead of introducing a bound for a
number of seats of each party, the whole number of seats leasdoeinded by 100000. The combination of
those two constraints make it easy to differ efficient soluifrom inefficient ones, while not bounding result
of each party leaves much more flexibility in testing corga®’ solutions. Furthermore, no changes have
to be applied to the jury’s solution, as its time complexigpdnd only on these two bounded variables. It is
noteworthy that a lower bound for the number of seats has indé@luced — it has to be positive, because
for zero number of seats the problem has no sense.

The memory limit has been set to standar®i82— the memory matters are not important in this task.
The time limit has been set tes.1— inefficient solutions are significantly exceeding it, venhfbr efficient
ones there is no problem in fitting into.

It is guaranteed that correct but inefficient solutionsfqraning well for not above 20 parties, will score
at least 40% of points. The constraint has been chosen i todgve even the most brutal, exponential
back-tracking algorithms a number of points for correctnes

5 Tests

The following tests have been prepareds(the total number of seats in the parliament):

e el e0.1 N (1 sek.) sample test from the problem statemenrt,4,s= 10
e el elocen. I N (1 sek.) simple small tesh,= 12 s= 2048

e el e2ocen. I N(1 sek.) simple small test,= 8,s= 28

e el e3ocen. I N(1 sek.) simple small testh,=5,s= 24

e el edocen. I N(1 sek.) simple large test,= 300,s= 45150
e elel.IN(1sek.) smalltesh=6,s=156

e ele2. IN(1sek.) smalltesn=11s=43

e ele3. IN(1sek.) smalltesn=12s=79

e eled. IN(1sek.) smalltesn=13 s=3272

e el e5. I N(1sek.) small testh = 14,s= 11592

e el e6.1N(1sek.) small testh=16,s= 75981

e el e7. 1N (1 sek.) small testh = 18,s= 86130

e el e8. 1 N(1 sek.) small testh = 20,s= 52361

e el e9.1N(1sek.) small testh = 26,s= 22041

e el el0.IN(1sek.) smalltesh=27,s= 37395

e el ell. IN(1sek.) medium testy= 45s=97154

e el el2. IN(1 sek.) medium test) = 48 s= 99588

e el e13. IN(1 sek.) medium test) = 72,s= 49306
e el eld. IN(1 sek.) mediumtesh=110s= 15936
e el el5. IN(1 sek.) medium tesh)y= 100 s= 47236
e el el6. IN(1sek.) large testh = 250 s= 84948

e el el7.IN(1sek.) large tesh =270, s= 99979

e el el8.IN(1sek.) large tesh = 300, s= 72267

e el el19.IN(1sek.) large testh = 300, s= 79669

e el e20.IN(1 sek.) large tesph = 300, s= 99945

Most of the tests are based on random choice of results oftiep from a certain interval. This method
of test data generation appears to be quite effective agensistic incorrect algorithms as well as inefficient
ones.

The contestants are provided with teldts- 4Jocen. They are very simple examples and, traditionally, all
incorrect solutions perform on them quite well.

The main test set are tests-20. Each of them is worth 5 points.

Tests 1- 8 haven < 20 and are worth exactly 40% of points. Tests 10 can be passed by solutions
with exponential complexity, however to fit into the limit tests 9 and 10, the algorithm has to be a bit
more sophisticated. Tests 3115 represent medium size of test data and can be solved bgthige with
complexity a bit worse than jury’s. Tests 260 are the largest ones, passable only by efficient solutions

6 Changes in the problem statement

A constraint concerning the number of seats of each partp&as replaced by a sentence 'You may assume
that the total number of seats in the parliament will be pasiénd lower or equal to 100000..
A sentence concerning guaranteed points for inefficienitsnls has been added to the Input section.
Reasons for those changes are discussed in section 'aoistra

7 Remarks

The task is rather easy. It is a standard example of dynarmagramming approach. A few 'tricks’ are used
inside, but still there is nothing 'new’ in the general manria spite of this, the task can be regarded as an
interesting proposition for an easy or medium problem ferdbntest.

The time limits have to be adjusted to the system on which dméestants’ solutions will be judged. The
1 second limit is recommended, as on my computer it diffegfficient solutions from efficient ones, but on
other architecture the performance of the algorithms mighslightly slower or faster. The third inefficient
algorithm should solve tests 1620 at least 2- 3 times longer than the limit.

8 List of work done

e Creation of this document,

e creation of the test set,

3 implementations of efficient algorithms in C/C++ and 2 inS%pAL,
3 implementations of inefficient algorithms in C++ and 3 inS@AL,
4 implementations of incorrect algorithms in C++,
implementation of a program verifying the correctness pfitrdata,
implementation of a program judging the contestant’s sdft

testing of the programs and setting the limits.

