
Task Description DAY-2
BOI 2006
Heinola
Finland CITY

BOI 2006 Page 1 of 2 19.05.06 / 21:21

CITY PLANNING

A space station is being built on a planet. The station will employ N persons. They
have to live somewhere, and for that, a city will be built around the station. The land
surrounding the station is divided into equal-sized square lots, and an apartment
building with up to K floors may be built on each lot. Each building shall have exactly
one apartment on each floor, and each person shall live in a separate apartment. The
lots are assigned coordinates in the form (x, y), where the space station has
coordinates (0, 0) and the rest of the lots are numbered as shown below:

… … … … …

… (-1, 1) (0, 1) (1, 1) …

… (-1, 0) (0, 0) (1, 0) …

… (-1, -1) (0, -1) (1, -1) …

… … … … …

As the traffic can only flow on streets between the lots, the distance of the lot (x, y)
from the space station is |x| + |y| – 1 units.

The cost of building a house is equal to the sum of the costs of each floor. It is known
that the cost to build a floor depends on the height of the floor, but not on the location
of the building.

The houses to be built will last for 30 years. People living in those houses will go to
work in the space station, and to transport them to and from the station during these
30 years will cost T·d per person, where d is the distance of the person’s building from
the station.

We can assume that the planet is big enough and the city to be built occupies a small
enough portion of the surface that we do not need to consider the curvature of the
planet’s surface.

Your task is to write a program that determines the minimal total cost of building the
houses and operating the transportation system for the 30 years.

Task Description DAY-2
BOI 2006
Heinola
Finland CITY

BOI 2006 Page 2 of 2 19.05.06 / 21:21

INPUT

The input is read from a text file named city.in. The first line of the input file
contains the integers N (1 ≤ N ≤ 1 000 000 000 000), T (1 ≤ T ≤ 500 000), and K
(1 ≤ K ≤ 20 000). The following K lines specify the costs of building the apartments
on each floor. The (i + 1)-th line contains the integer ci (1 ≤ ci ≤ 2 000 000 000), the
cost of building an apartment on the i-th floor (assuming all the i − 1 floors below
have already been built). It is known that building a higher floor is always more
expensive than building a lower floor: c1 < c2 < … < cK.

OUTPUT

The output is written into a text file named city.out. The first and only line of the
output file should contain a single integer — the total cost to build the city and to
operate the transportation system for 30 years. It may be assumed that the answer will
not exceed 8·1018 (that is, it will fit into a 64-bit signed integer).

EXAMPLE

city.in city.out

17 5 4 1778
100
107
114
121

Task Description DAY-2
BOI 2006
Heinola
Finland RLE

BOI 2006 Page 1 of 2 19.05.06 / 23:28

RLE COMPRESSION

RLE is a simple compression algorithm used to compress sequences containing
subsequent repetitions of the same character. By compressing a particular sequence,
we obtain its code. The idea is to replace repetitions of a given character (like aaaaa)
with a counter saying how many repetitions there are. Namely, we represent it by a
triple containing a repetition mark, the repeating character and an integer representing
the number of repetitions. For example, aaaaa can be encoded as #a5 (where #
represents the repetition mark).

We need to somehow represent the alphabet, the repetition mark, and the counter. Let
the alphabet consist of n characters represented by integers from the set
∑ = {0, 1, ... , n − 1}. The code of a sequence of characters from ∑ is also a sequence
of characters from ∑. At any moment, the repetition mark is represented by a
character from ∑ , denoted by e. Initially e is 0, but it may change during the coding.

The code is interpreted as follows:

• any character a in the code, except the repetition mark, represents itself,

• if the repetition mark e occurs in the code, then the two following characters
have special meaning:

o if e is followed by ek, then it represents k + 1 repetitions of e,

o otherwise, if e is followed by b0 (where b ≠ e), then b will be the repetition
mark from that point on,

o otherwise, if e is followed by bk (where b ≠ e and k > 0), then it represents
k + 3 repetitions of b.

Using the above scheme, we can encode any sequence of characters from ∑. For
instance, for n = 4, the sequence 1002222223333303020000 can be encoded as
10010230320100302101. First character of the code 1 means simply 1. Next 001
encodes 00. Then, 023 represents 222222, 032 represents 33333, and 010 switches the
repetition mark to 1. Then 0302 represents itself and finally 101 encodes 0000.

A sequence may be encoded in many ways and code length may vary. Given an
already encoded sequence, your task is to find a code with the least number of
characters.

Write a program that:

• Reads the size of the alphabet and the code of a sequence.

• Finds the shortest code for that sequence.

• Writes the result.

Task Description DAY-2
BOI 2006
Heinola
Finland RLE

BOI 2006 Page 2 of 2 19.05.06 / 23:28

INPUT

The input is read from a text file named rle.in. The first line contains one integer n
(2 ≤ n ≤ 100 000): the size of the alphabet. The second line contains one integer m
(1 ≤ m ≤ 2 000 000): the length of the code. The last line contains m integers from the
set {0, 1, ... , n − 1} separated by single spaces, representing the code of a sequence.

OUTPUT

The output is written into a text file named rle.out. The first line should contain
one integer m': the least number of characters in a code representing the given
sequence. The last line of the output should contain m' integers from the set
{0, 1,... , n − 1} separated by single spaces: the code of the sequence. If there exist
several shortest sequences, your program should output any one of them.

EXAMPLES

For the input file rle.in:

4
20
1 0 0 1 0 2 3 0 3 2 0 1 0 0 3 0 2 1 0 1

the correct output file rle.out is as follows:

19
1 0 1 0 0 0 1 2 3 1 3 2 0 3 0 2 1 0 1

And for the input file rle.in:

14
15
10 10 10 0 10 0 10 10 13 10 10 13 10 10 13

the correct output file rle.out is as follows:

9
0 10 13 0 10 13 0 10 10

Task Description DAY-2
BOI 2006
Heinola
Finland JUMP

BOI 2006 Page 1 of 2 16.05.06 / 9:28

JUMP THE BOARD!

An n × n game board is populated with integers, one nonnegative integer per square.
The goal is to jump along any legitimate path from the upper left corner to the lower
right corner of the board. The integer in any one square dictates how large a step away
from that location must be. If the step size would advance travel off the game board,
then a step in that particular direction is forbidden. All steps must be either to the right
or toward the bottom. Note that a 0 is a dead end which prevents any further progress.
Consider the 4 × 4 board shown in Figure 1, where the solid circle identifies the start
position and the dashed circle identifies the target. Figure 2 shows the three legitimate
paths from the start to the target, with the irrelevant numbers in each removed.

2 3 3 1
1 2 1
1 2 3
3 1 1

3
1
0

2 3

1 0

2

1 2 1
0

2

1
3 0

 Figure 1 Figure 2

Your task is to write a program that determines the number of legitimate paths from
the upper left corner to the lower right corner.

INPUT

The input file jump.in contains a first line with a single positive integer n,
4 n 100, which is the number of rows in this board. This is followed by n rows of
data. Each row contains n integers, each one from the range 0…9.

OUTPUT

The output file jump.out should consist of a single line containing a single integer,
which is the number of legitimate paths from the upper left corner to the lower right
corner.

EXAMPLE

jump.in jump.out

4 3
2 3 3 1
1 2 1 3
1 2 3 1
3 1 1 0

Task Description DAY-2
BOI 2006
Heinola
Finland JUMP

BOI 2006 Page 2 of 2 16.05.06 / 9:28

GRADING

The number of legitimate paths can be quite big. Only 70% of the score can be
achieved using a 64-bit integer variable (long long int in C, Int64 in Pascal).
It is guaranteed that all inputs will lead to a number of legitimate paths that can be
written with no more than 100 digits.

