
Analysis of LAMPS. 
 
This task has basically 3 solutions with different complexity. 
 
1. The first solution is to simply compute all the intermediate patterns. In this case, M different 
states for each of the N lamps must be computed, yielding an O(NM) solution.  
 
 
2. A standard approach to improve the solution (for smaller values of M) is to hash the pattern with 
some function. Then it can be easily checked (probably with O(1) complexity), whether the same 
pattern has ever occurred before. 
 
If the same pattern occurs at different moments t1 and t2, then the patterns repeat with cycle of 
length t2 – t1. Knowing that, the pattern at the moment M is equal to the pattern at the moment 
t1+(M–t1) mod (t2–t1). 
 
The most intuitive hash function to use is to simply view the representation of the pattern as a 
binary number. Since the number of different patterns of length N is 2N, the number of hash values 
is exponential to N. This method has a running time complexity O(N×2N), which does not depend 
on M. But it also requires O(2N) of memory. 
 
However, since for most numbers N, the maximum length of the cycle of patterns consisting of N 
lamps is only a small fraction of 2N, hash functions with less hash values can be used. For example, 
one could use only the states of k<N fixed lamps, rather than the states of all lamps, when hashing 
the pattern. We believe that the most suitable values for k are 20..24, as the array of 2k elements 
should fit into the memory. However, for small values of N (N<100), this seems to be enough. 
Although for most (if not all) numbers N, the running time complexity is asymptotically less, than 
O(N×2N), we do not know any better bound. 
 
 
 
3. The third solution is based on the fact that we do not need to calculate all the M-1 intermediate 
patterns, to get the M–th one. 
 
First of all, we need to prove the following lemma: 
 
Lemma 1. For every prime p and positive integers k, l, which satisfy 1<l<pk, the binomial 
coefficient C(pk, l) is divisible by p. 
 
Proof. Skipped, but not difficult. 
 
Choosing p= 2, C(2k, l) is thus an even number. 
 
Let L (l, t) denote the state of lamp l at moment t. 
 
Let XOR(a1×b1, a2×b2, ...,ai×bi) denote the XOR of binary digits 
a1, a1, ..., a1,   a2, a2, ..., a2, ...,  ai, ai, ..., ai 
   b1 times          b2 times             bi times 
 
As the function XOR is both commutative and associative, we can write: 



L(n, n) =XOR(L(n–1, n–1)×1, L(n, n–1)×1) =  
=XOR(XOR(L(n–2, n–2)×1, L(n–1, n–2) ×1), XOR (L(n–1, n–2) ×1, L(n, n–2)×1)) = 
=XOR(L(n–2, n–2)×1, L(n–1, n–2) ×2, L(n, n–2) ×1)= 
=XOR (L(n–3, n–3)×1, L(n–2, n–3) ×3, L(n–1, n–3) ×3, L(n, n–3) ×1)=  
= XOR (L(n–j, n–j)×C(j, j), L(n–j+1, n–j)×C(j, j–1), L(n–j+2, n–j) ×C(j, j–2), ... 

L(n–1, n–j)×C(j, 1), L(n    , n–j)×C(j, 0))  
 

Choosing j = 2k, and bearing in mind that C(2k, l) is even and XOR (a, a) = 0, we get 
L(n, n) = XOR(L(n–2k, n–2k)×C(2k, 2k), L(n–2k+1, n–2k) ×C(2k, 2k–1),  

L(n–2k+2, n–2k) ×C(2k, 2k–2), ... L(n–1    , n–2k) ×C(2k, 1), 
L(n, n–2k) ×C(2k, 0)) =  
XOR (L(n -2k, n–2k)×1, L(n, n–2k) ×1),  

 
thus the state of the lamp is determined by the states of 2 lamps 2k seconds before, and can be 
computed with a single XOR.  
 
Hence we only need to compute lg(M) intermediate patterns to get the answer, therefore the time 
complexity is O(N×lg(M)). 


