
Analysis: BIC
Bicriterial routing

BOI’02, day ??? ??.04.2002

1 Solution

prog/bic.cpp Let K be the upper limit on the road toll. The cost of any route is then limited by
nK.

The exemplary solution is a dynamic one. For each k from 0 to nK and for all vertexes one
computes the minimal traveling time from s to the given vertex with the fee equal exactly k.

Initialization for k = 0 is just an application of the Dijkstra’s algorithm for the graph limited to
these edges with toll c = 0. For bigger k we first calculate the minimal time basing on the previously
computed results and assuming that the last edge on the route has a positive toll (this is done for
all edges). Next we take into account edges with toll c = 0, again using Dijkstra’s algorithm.

Results calculated for vertex e give us the final result. This algorithm has time complexity
O((n + mlogn) ∗ nK) — Dijkstra’s algorithm is implemented using a heap. Memory complexity
is O(nK + m), since we can focus just on last K + 1 rows of the array of minimal traveling times
(except for e).

2 Tests

File bicgen.cpp contains a generator of tests.

• bic0.IN (ε sek.) test from the problem text

• bic1a.IN (ε sek.) random, n=5, m=20

• bic1b.IN (0.1 sek.) not connected graph, n=10, m=50

• bic2.IN (0.1 sek.) random, n=2, m=300

• bic3.IN (0.3 sek.) large result, n=10, m=180

• bic4.IN (0.4 sek.) random, n=20, m=60

• bic5.IN (3.7 sek.) random, n=50, m=200

• bic6.IN (2.2 sek.) many routes (not fee-time pairs), n=50, m=147

• bic7.IN (8.0 sek.) random, n=75, m=240

• bic8.IN (10.3 sek.) random, n=88, m=230

• bic9.IN (9.1 sek.) large result, n=100, m=297

• bic10a.IN (13.8 sek.) random, n=98, m=300

1



• bic10b.IN (12.3 sek.) not connected graph, n=100, m=300

Pairs of tests 1a and 1b, 10a and 10b should be graded on a “conjunction” basis. It prevents from
awarding points to solutions outputting just 0.

2


