
Day 2 Task Language

 Page 1 of 2

FIRE ENG

Fireworks in RightAngleles

In the city of RightAngleles streets are built as an infinite square grid – any two of
them are either parallel or perpendicular to each other and the distance between
two nearest parallel streets is the same (let’s denote this distance as one unit). All
streets that are oriented in West-East direction are called horizontal streets and are
numbered by consecutive integers in South-North direction. All streets that are
oriented in South-North direction are called vertical streets and are numbered by
consecutive integers in West-East direction.

Every citizen lives in a house with entrance located at one particular horizontal
and vertical street intersection. There may be several citizens living in the same
house.

Mayor of RightAngleles would like to brush up his popularity by organizing a
fireworks display at an intersection of the main horizontal street (labelled with
number 0) and some vertical street. It is known where the citizens interested in
coming and enjoying the fireworks live. Fireworks will be seen along both streets at
which intersection the display will take place; furthermore, due to safety reasons
during the display observers must be at least S units away from the intersection from
which the fireworks are launched. Thus, if the fireworks will be launched from the
intersection with vertical street V, then every interested citizen must come to an
intersection on the main horizontal street (with number 0) or the vertical street V no
closer than S units from the intersection of the main horizontal street and vertical
street V. For example, if S=2, then observing may be done from any intersection on
the main horizontal street, except the ones that intersect with streets V-1, V, and
V+1, and from all intersections on the vertical street V, except the ones that intersect
with horizontal streets -1, 0, and 1.

The overall positive influence of fireworks is strongly related to the total distance
which citizens need to move to observe the display. Therefore, the intersection for
the fireworks must be chosen in a way to minimize this total distance.

For example, if S=2 and there are seven citizens whose locations are shown on the
map (there are two of them in (-4;8)), then the best place for the fireworks is the
main street intersection with 8th vertical street; in this case the total distance which
citizens need to move is 9 units.

Write a program which calculates the minimum possible total distance (in units)
which citizens have to move to observe the fireworks.

Day 2 Task Language

 Page 2 of 2

FIRE ENG

Input data

Input data is given in the text file fire.in. The first line contains two positive
integers separated by spaces: the number of citizens N (N≤105) and the safety
distance S (S≤106) in units. The next N lines contain the descriptions of the locations
of citizens. Each of these lines contains two integers Hi and Vi separated by a space;
Hi and Vi (-109≤Hi,Vi≤109) denote the numbers of the horizontal and vertical street,
respectively, of the intersection where the entrance to the i-th citizen’s house is
located.

Output data

The first and only line of the text file fire.out must contain exactly one integer –
the minimum total distance (in units) which citizens must move to observe the
fireworks.

Example (corresponds to the figure given in the task description)

Input data (file fire.in) Output data (file fire.out)
7 2

3 -2

0 8

-4 8

-1 4

-2 13

-4 8

1 5

9

Grading

Test cases where 0≤Vi≤5000 are worth 20 points.
Test cases where N≤5000 are worth 40 points.

Day 2 Task Language

 Page 1 of 1

MELODY ENG

Melody

Linas likes to play some musical instrument, and nobody knows
what it is called. The instrument has S holes and Linas is able to
play N different notes (numbered from 1 to N) by covering each
hole in one of 10 different ways (numbered from 0 to 9). Every
note can be played by covering all holes in exactly one way,
described by a sequence of digits corresponding to coverings of
respective holes. If the holes are covered incorrectly (i.e., not corresponding to any note),
the instrument starts to produce very unpleasant sounds, so Linas plays a wrong note rather
than covers holes incorrectly.

Linas plays in a band where he has to play complicated tunes very quickly. Linas has
written a tune (i.e., a sequence of numbers, corresponding to notes) and he wants to play it
together with the band. Unfortunately, Linas doesn’t play perfectly. He can only play two
successive notes if by playing the second he has to cover no more than G holes differently
than when playing the first one. Hence he decided to sometimes play a wrong note in the
tune. Each incorrect note Linas plays is called mistake.

Task
For a given tune find a modified tune that Linas can play making the least possible

number of mistakes.

Input data
First line of text file melody.in contains three integers: number of possible notes

N(1≤N≤100), number of holes S and fingers’ speed G(0≤G<S≤100). Next N lines contain the
list of possible notes. There are S digits without spaces in each of them. The j-th digit in the
i+1-th line corresponds to covering of the j-th hole required to play the i-th note (hole can be
covered in various ways, labelled by digits from 0 to 9). No two notes are played in the same
way.

N+2-th line contains the length of the tune L(1≤L≤105). The last line contains the tune: L
integers separated by spaces, corresponding to the notes played successively in the tune.

Output data
The first line of the text file melody.out must contain one non-negative integer – the

minimum number of mistakes. The second line must contain a valid tune which obtains the
minimum number of mistakes: L integers separated by spaces, corresponding to the notes
that Linas should play. If there are multiple such tunes, output any of them.

Example

Input data (file melody.in) Output data (file melody.out) Comment
5 4 2

1111

2101

2000

0100

0000

7

1 5 4 5 3 2 1

1

1 2 4 5 3 2 1
Linas can’t play note 5 directly
after note 1.

Grading

Test cases where L≤100 are worth 40 points.
Test cases where L≤5000 are worth 65 points.

Day 2 Task Language

 Page 1 of 2

TINY ENG

Tiny (open input task)

Elder people still remember the famous computer game “TETRIS” created by
Alexey Pajitnov, where pieces consisting of four squares (tetrominoes) fall from the
sky and the goal of the game is to rotate and land every piece in a rectangular
container creating as many lines of blocks without gaps as possible. When such lines
are created, they disappear giving more space for the following pieces.

Let’s investigate a simpler version of the game, called “Tiny TETRIS” (or just “Tiny”
for short). There are only nine different Tiny pieces (or t-pieces) consisting of one to
three squares:

The number denotes the type of a t-piece and will be used further to reference

the particular t-piece.
The goal of the game is the same – falling t-pieces must be put in a rectangular

container which is 9 units wide and 9 units high. Contrary to TETRIS, t-pieces cannot
be rotated. Moreover, they cannot be moved to the left or right after they start
falling. Thus, for each t-piece the player must only choose the container’s column
number (integer from 1 to 9) where the leftmost square of the piece (marked as ×)
will fall.

Each game consists of a finite sequence of N t-pieces from which as many as
possible must be dropped in the container without exceeding its upper level or
making an illegal move. The score of the game is equal to the number of successfully
dropped t-pieces.

At the beginning the game counter is set to 0.
The algorithm of the game is the following:
1) Player chooses the column for the leftmost square of the current t-piece;
2) If the column is set correctly (for example, column 8 can never be correct for

the t-piece 5), t-piece falls down until it meets an obstacle; otherwise the game is
over.

3) If the t-piece fully fits inside the container (i.e., all squares are inside the 9×9
rectangle) the value of the counter is increased by one. Otherwise, the game is over.

4) Then it is checked whether there are any completed horizontal lines (horizontal
lines filled completely with blocks of t-pieces without any gaps). If there are any then
these lines disappear and the lines above them are shifted down without changing
their configuration.

5) If there are any t-pieces left, proceed to 1).
Otherwise the game is over.

Score of a particular game is the value of the
counter at the moment when the game ends.

Let’s analyze one particular game.
Sequence of the given 20 t-pieces is the following:

5,4,1,6,7,6,4,4,7,9,5,5,6,8,3,4,3,7,4,2. Let’s assume
that the first 17 t-pieces have already been

Day 2 Task Language

 Page 2 of 2

TINY ENG

successfully dropped in the container in the columns 1,2,2,4,8,8,7,4,8,6,1,1,4,8,3,7,7,
respectively. Until this moment no lines have been completed, the current value of
the counter is 17 and it is time to drop t-piece 7 (letters in the figure are assigned
consecutively to t-pieces):

There are only two valid columns where t-piece 7 can be dropped:

a) column 1:

b) column 5 (in this case one line will be
completed and, therefore, disappear):

Task

You are given five files each containing a description of a particular game: tiny.i1,
tiny.i2, tiny.i3, tiny.i4, and tiny.i5. Each file contains the sequence of t-pieces and
has the following format: the first line contains a single integer N. The next N lines
describe the t-piece sequence; each line contains an integer between 1 and 9 – the
number of the particular t-piece. T-pieces are given in the order how they must be
dropped in the container; the i-th t-piece is given in the i+1-st line of the file.

For each of the given input file you must submit a corresponding output file
(tiny.o1, tiny.o2, tiny.o3, tiny.o4, and tiny.o5) with at most N rows – the numbers of
the columns where pieces are dropped. The i-th row of the output file must contain
the number of the column where the i-th t-piece from the input data must be
dropped.

It is guaranteed that for each input file there exists a sequence of columns which
allows all t-pieces to be successfully dropped in the container (and gets the final
score for the game equal to N).

Grading and feedback

Each of the five test cases is worth 20 points. The amount of points you will
receive for a particular output file (test case) is calculated using the following
formula:

20 × your_score/maximum_score_among_all_contestants,
rounded to the nearest number with 2 digits after the decimal.

During the competition you will receive feedback for each submitted output file:
your score and the amount of points you would receive for this output assuming that
someone gets the perfect score. After the competition the output files will be re-
evaluated with the actual maximum score among all contestants and you may
receive more points for the file.

