
BOI 2011
Copenhagen, Denmark
April 29 – May 3, 2011

Day 2
spoiler

meetings
Page 1 of 2

Meetings

Let’s denote by T (n) the time needed for n participants to reach a decision. First we observe that
T (n) never decreases as n increases. From this follows that when we divide the n participants into
i groups, we want to make the largest group as small as possible. Thus, it is optimal to let most
groups have size dn/ie and the last one may be smaller. This gives us a simple dynamic programming
solution with O(N) memory and O(N2) time that would be sufficient to get 40 points:

a[1] = 0; // special case: no meeting
for (int i = 2; i <= n; ++i) {
a[i] = i * p + v; // baseline: no groups
for (int j = 1; j < i; ++j) {
// j groups: the size of groups is i/j rounded up
int k = (i - 1) / j + 1;
int t = a[k] + a[j];
if (a[i] > t)
a[i] = t;

}
}

Next we can observe that the inner loop in the above solution basically finds the value of T (n) as

T (n) = min
a·b≥n

{T (a) + T (b)}. (1)

Since this is symmetric, we only need to consider the pairs (a, b) where a ≤ b, or a ≤
√

n. Thus we
can get a solution with O(N

√
N) running time and earn 70 points just by replacing the line

for (int j = 1; j < i; ++j)

with the line

for (int j = 1; j * j < i; ++j)

To model dividing the groups into sub-groups, we can recurrently express T (a) and T (b) in (1), and
eventually arrive at the general form

T (n) = min
n1·n2·...·nk≥n

{T (n1) + T (n2) + . . . + T (nk)}. (2)

Without further sub-grouping T (ni) = ni · P + V and thus the total working time corresponding to
the grouping in (2) can be expressed as

T (n, k) =
∑

(ni · P + V ) = (
∑

ni) · P + k · V. (3)

Obviously k ·V in (3) depends only on k, but not on the choice of values of ni. Thus, to minimize the
value of T (n) for a fixed k, we need to choose ni so that

∑
ni would be minimal.



BOI 2011
Copenhagen, Denmark
April 29 – May 3, 2011

Day 2
spoiler

meetings
Page 2 of 2

Since the sum of factors multiplying to a given product is minimal when the factors are equal, we
obtain the optimal value for T (n) when ni are as close to k

√
n as possible. More precisely, we need to

use b k
√

nc for as many and d k
√

ne for as few ni as possible so that
∏

ni would still be at least n.

Since each ni must be at least 2 (there’s no benefit in creating sub-groups with just one member),
we only need to consider the values of k up to log2 N . From the preceding, we can easily compute
T (n, k) using just O(k2) multiplications, which gives us a solution with O(1) memory and O(log3 N)
time that would get the full score:

// computes T(n, k) for fixed k
long long solve_k(long long n, int p, int v, int k) {
long long fact = (long long) pow(n, 1.0 / k);
// since fact was rounded down above, we now increase
// some factors by 1 to have them multiply to at least n
int incr = 0;
while (power(fact + 1, incr) * power(fact, k - incr) < n)
++incr;

// the answer is \sum(factors)*p + k*v
return (k * fact + incr) * p + k * v;

}

// computes T(n)
long long(solve(long long n, int p, int v) {
if (n == 1)
return 0;

long long result = solve_k(n, p, v, 1);
for (int k = 2; 2ll << k <= n; k++) {
long long r = solve_k(n, p, v, k);
if (result > r)
result = r;

}
return result;

}

Looking at the task text, there might be some doubt whether the group leaders are required to hold
a single meeting or may also form sub-groups among themselves. In other words, are we allowed to
use T (a) + T (b) as the right-hand side of (1) or should we be restricted to T (a) + b · P + V instead?
It turns out this does not matter, as any process involving the b group leaders forming b′ sub-groups
could also be modeled as forming b′ groups first and these splitting into a total of b sub-groups.

Task idea by Konstantin Tretyakov, spoiler by Ahto Truu, with hints from Thomas Fersch and Ludwig
Schmidt.


