
Opracowanie: GRI
Grid
HISTORIA:
• v. 1.2: 2008.04.07, Jakub Lacki, minor cleanups, more remarks
• v. 1.1: 2008.04.06, Jakub Lacki, some corrections after discovering solutions with iteration limit
• v. 1.0: 2008.03.30, Jakub Lacki, everything
• v. 0.1: 2008.03.15, Jakub Lacki, empty template

dokument systemu SINOL 1.6

1 Introduction

At first sight, it seems that a dynamic algorithm can be used tosolve this problem. No simple dynamic
programming algorithm works here, though, as this problem lacks optimal substructure: before we place a
line in one direction, we would like to know the placing ofevery line going in the other direction.

Nevertheless, dynamic programming can be used to solve a similar problem in one dimension. We fill the
array calc, where calc[i][j] = the best computing time of i leftmost squares divided with j lines.

In one dimension, we can also use binary search. Once we know the desired computing time, we can
easily calculate the number of lines we need to use using greedy approach.

Although model solutions run in exponential time, they utilize both these ideas to improve their time
complexity.

2 Model solutions

The simplest solution is to consider all
(n

r

)(m
s

)

placings of lines. However, if we fix placing of lines going
in one direction, then the optimal placing of lines going in the other direction can be computed much faster.
There are two possible approaches:

• We can use binary search to find an optimal computing time. Given a candidate for an optimal com-
puting time and placing of all horizontal lines, we can placethe vertical lines from the leftmost to the
rightmost one using greedy approach: each vertical line should be put as far to the right as possible.

This solution runs inO(
(n

r

)

nm log(S)) time, where S is the sum of all computation times for individual
squares. It is implemented in gri.

• Another approach considers all
(n

r

)

placings of horizontal lines. For each placing, it calculates the
minimal processing time using dynamic programming. Letmin[i][j] be the minimal processing time
of i first columns divided withj meridians. The array min can be easily filled inO(m2n) time. The
overall running time isO(

(n
r

)

m2n). It is implemented in gri1.
We can preprocess the data inO(nm) time, so that we can calculate the computation time for any rectangle

in constant time. This reduces thenm factor tors. However, in the worst-case scenario,r = n
2 ands = m

2 , and
this optimization makes little difference.

3 Other solutions

Brute-force solution It considers all
(n

r

)(m
s

)

placings of lines and runs in
(n

r

)(m
s

)

nm time. This solution
scores 40 points. It is implemented in gris1.

1

Genetic algorithm This algorithm maintains a pool of candidate solutions. In each step it:

• picks a solution, copies it and then mutates the copy, by introducing random changes,

• creates a new solution by crossing over some other solutions(for example, by taking meridians from
one solutions and parallels from the other).

• discards the worst solutions, so that the pool doesn’t grow too large.

It outputs the value of the best solution found. It scores around 40–60 points, as it can give incorrect results.
This solution is implemented in grib1.cpp and grib2.

Brute-force solution with pruning It is similar to the brute-force approach. It places the meridians and
parallels starting from the upper left corner and remembersthe best computing time obtained so far.

For each partial placing, if for any rectangle,

⌈ sum o f all computing times
number o f parts this rectangle is going to be divided into ⌉ ≥ best result obtained so f ar

we know that completing this partial placing would not give us a better result.
This solution is in many cases faster than optimal solutions. However, in some specific situations it can

be even worse than the brute-force algorithm.
This solution, scoring around 50 points is implemented in file gris10.

Brute-force solution with pruning and binary search It is the same as the above solution, but instead
of improving the best result in each step, it looks for the optimal solution using binary search. It scores 50
points. Its running time can be completely changed by reflecting or rotating the input data. Therefore there
are 8 versions of this solution, implemented in files gris2 – gris9.

Brute-force solution with pruning and iteration limit Both of the two previous solutions can be heavily
improved by a simple extension: if after a big number of iterations we did not find a solution for a given
computing time limit, we assume that a solution does not exist. Both of the two previous solutions can be
extended with this trick. All of them are implemented in filesgris5 – gris20. They score 70-80 points. The
solutions which do not rotate or reflect the input data score 70 points.

Naive algorithms This algorithm initially places alln− 1 meridians andm− 1 parallels. In each step it
decides (randomly) whether to remove a meridian or a parallel and selects the line to remove in a greedy
manner. This process is repeated 1000 times and the best solution found is outputted.

Another naive solution is essentially a genetic algorithm,with the pool size equal to 1. Both solutions
score at most 10 points. They are implemented in files grib1 and grib2.

4 Limits

All solutions, except for the brute-force algorithm use little amount of memory. The memory limit of 32MB
is sufficient for all solutions mentioned here, including the simplest brute-force approach.

5 Tests

There are ten groups of tests. Each of them consists of 3 to 4 tests.

2

5.1 Types of tests

This section is only a simplified description of the most interesting types of tests. Check the input generator
code for more details.

Distance test The value of each field is a sum of distances to points from a given set. The brute-force
solution with pruning runs very slowly on these tests.

Square test The value of field (i,j) is a random integer from the interval[0,(33∗min(|i−x|, | j−y|)))2), for
some x and y. The brute-force solution with pruning runs veryslowly on these tests. The genetic algorithm
can give wrong results.

Stairs test The value of field (i,j) is a random integer from the intervalC ∗max(i mod p, j mod p) for some
p and C. The genetic algorithm often gives a wrong result.

Chessboard test Each chessboard square consists of several grid squares. The value of each “black” field
is a random integer≤ 1000000, whereas a “white” field value is at most 10 times smaller. The brute-force
solution with pruning usually runs slowly on these tests, depending on the chessboard square size.

Steep test The value of each field is an exponential function, taking field position as an argument.

Exponential stairs test The value of field (i,j) is a random integer, lower thanexp(max(|i− x|, | j− x|) for
a given x and y. Solutions with iteration limits can fail on these tests.

Hurricane (verification) The value of each field in a square of sizen
2 ×

m
2 is much bigger than the rests.

This is a good test against correcting algorithms, but is notvery good gainst others.

3

5.2 Test data
Filename n m r s Test type
gri0.in 7 8 2 1 Sample test

gri1ocen.in 6 6 2 3 All computing times = 1
gri2ocen.in 2 2 1 1
gri3ocen.in 5 5 4 4
gri4ocen.in 18 18 1 1

gri1a.in 2 2 1 1 Random
gri1b.in 10 2 3 1 Random
gri1c.in 2 10 1 3 Random
gri2a.in 6 6 5 5 Random
gri2b.in 8 7 6 4 Random
gri2c.in 8 8 4 4 All computing times = 0
gri3a.in 4 10 2 5 Distance
gri3b.in 10 4 5 2 Distance
gri3c.in 8 8 4 4 Stairs
gri4a.in 10 10 6 4 Random
gri4b.in 10 5 7 2 Square
gri4c.in 5 10 2 7 Square
gri5a.in 15 7 8 2 Exponential
gri5b.in 14 16 7 8 Stairs
gri5c.in 16 14 8 7 Stairs
gri6a.in 10 18 6 8 Exponential stairs
gri6b.in 18 18 5 5 Square
gri6c.in 17 16 11 10 Exponential stairs
gri6d.in 17 17 8 8 Hurricane
gri7a.in 16 16 12 12 Square
gri7b.in 16 16 12 12 Square
gri7c.in 18 18 8 8 Stairs
gri7d.in 18 17 11 11 Exponential stairs
gri7e.in 18 17 9 8 Hurricane
gri8a.in 17 18 13 14 Square
gri8b.in 17 18 13 14 Square
gri8c.in 17 17 7 7 Stairs
gri8d.in 18 18 12 12 Exponential stairs
gri8e.in 17 18 8 9 Hurricane
gri9a.in 18 18 11 12 Exponential stairs
gri9b.in 18 18 12 11 Steep
gri9c.in 18 18 7 7 Stairs
gri9d.in 18 18 7 7 Stairs
gri9e.in 18 18 9 9 Hurricane
gri10a.in 18 18 11 11 Square
gri10b.in 18 18 9 9 Square
gri10c.in 18 18 10 10 Exponential stairs
gri10d.in 18 18 7 7 Distance
gri10e.in 18 18 9 9 Hurricane

4

5.3 Remarks

The model solution run in less than two seconds on a 2GHz Core 2Duo mobile CPU. The gri1 solution has
a slightly different running time, but it should also score 100 points.

Time limits should be set according to the model and alternative solution running times. As the contestants
will know the time limit in advance, it should be strict, as a bigger time limit makes it easier for incorrect
solutions (i.e. genetic algorithm) to score more points. I suggest time limit is around two times bigger than
the maximal running time of the model and alternative solutions.

5.4 Expected number of points

As there are around 30 solution and over 30 tests, a complete table would not fit.
File names Expected number of points Solution type

gri, gri1, gri2, gri3 100 Model and alternative solutions
gris1,gris11 40 Brute-force solution

gris2-gris9, gris12 50–60 Brute-force solution with pruning
and binary search

gris10 60 Brute-force solution with pruning
grib1–grib2 40–60 Genetic solutions
grib3–grib4 0–10 Naive solutions
grib5,grib13 70 Brute-force solution with pruning

and iteration limit
grib6–grib12, grib14–grib20 70–80 Brute-force solution with pruning,

iteration limit and input data rotation

6 Problem statement changes

1. Minor denotation change: k and l were changed to r and s, as lwas too similar to 1.

2. Output format change: instead of outputting a complete solution, it is sufficient to output an optimal
computation time. I am deeply convinced that, it does not make the task any easier.

7 Remarks

Tests The number of tests can not be easily reduced. Every tests plays an important role, as there are many,
completely different incorrect solutions. Before removing a test, double-check whether an incorrect solutions
does not score too much points. If you want to change the inputdata generator, be aware that the random
seeds were carefully chosen. The functions which require random-seed tuning are marked in the input data
generator.

Package size I do realize that there are way too many solutions and tests. Unfortunately I was unable to
find a symmetric test, which could prove all brute-force solutions wrong.

Missing solutions Solutions gris3-gris10 do not have their Pascal versions. All these solutions either run
very quickly or terribly slowly. Therefore, including Pascal versions seemed unnecessary.

5

