
Analysis: GLO
Gloves
HISTORY:
• v. 1.00: 2008.03.13, MKed, elaboration of the problem

dokument systemu SINOL 1.6

1 Introduction

In the problem we are given twon terms-long progressions:(ai) and(bi) of non-negative integers and we
have to produce two numbers 0≤ A ≤ ∑i ai and 0≤ B ≤ ∑i bi, such that for each two progressionsa′i andb′i
satisfying the following conditions:

∀i0≤ a′i ≤ ai (1)

∀i0≤ b′i ≤ bi (2)

∑
i

a′i = A (3)

∑
i

b′i = B (4)

it is true that:
∃i∈{1,2,...,n}a′i > 0∧b′i > 0 (5)

We will call such pairs(A,B) acceptable. Among all acceptable pairs, we are asked to produce one, which
minimizes the sumA + B. Obviously, there may be more than one correct solution.

2 Notation

• Let us denoteZn = {1,2, . . .n}.

• For anyX ⊂ Zn let us denoteAX = ∑i∈X ai andBX = ∑i∈X bi.

3 Model solution

3.1 Acceptable pairs

First of all, we should find a way to determine, whether a pair(A,B) is acceptable or not.
Theorem 1

A pair (A,B), for which 0≤ A≤∑i ai and 0≤ B≤∑i bi is acceptable if and only if∀X⊂ZnA > AX ∨B > BZn\X .
Proof

Let us assume, that a pair(A,B) is not acceptable. It means, that there exists a pair of progressions((a′i),(b
′
i)),

whose sums areA andB respectively, and:

∀ia
′
i = 0∨b′i = 0 (6)

If we denoteX = {i : a′i > 0} andY = {i : b′i > 0}, then assumption (6) says, thatX ∩Y = /0.
MoreoverA ≤ AX ∧B ≤ BY . BecauseX andY are disjoint,Y ⊂ Zn \X , so due to terms of(bi) being

non-negative:B ≤ BY ≤ BZn\X .

1

Thus we have proved that if a pair(A,B) is not acceptable, then∃X⊂ZnA ≤ AX ∧B ≤ BZn\X .
Now let us take a pair, which is acceptable. Then if we take anyprogressions(a′i),(b

′
i) satisfying (1) –

(4), then setsX andY constructed as above are not disjoint.
It means, that for any disjoint setsX ,Y ⊂ Zn there exists no pair of progressions satisfying conditions(1)

– (5) and such, that
X = {i : a′i > 0}∧Y = {i : b′i > 0} (7)

If for any pair of progressions(a′i),(b
′
i) satisfying (1) – (2) and (7) it was true, that∑i a′i ≥ A∧∑i b′i ≥ B,

then decreasing some terms we would find a pair of progressions satisfying (1) – (4) and (7). A contradiction.
This leads to a conclusion, that for every pair of progressions satisfying (1) – (2) and (7) we have∑i a′i <
A∨∑i b′i < B. In particular, for

a′i =

{

0 i /∈ X
ai i ∈ X

b′i =

{

0 i /∈Y
bi i ∈Y

we getAX < A∨BY < B. TakingY = Zn \X we get, that∀X⊂Zn AX < A∨BZn\X < B, Quod Erat Demon-
stradum.

3.2 Minimization

Theorem 1 simplifies the problem significantly. Now, we can check all 2n subsetsX ⊂ Zn, and for each
one compute the pair(A j,B j) = (AX ,BZn\X). For each of these pairs(A j,B j) we can draw a rectangle
[0,A j] × [0,B j] on the planeℜ2. A pair (A,B) will be acceptable if and only if the point(A,B) is out-
side all of the drawn rectangles and at the same time inside the rectangleR = [0,AZn]× [0,BZn].

Finally, we have to minimize the sumA+B among all acceptable points, i.e. among all points outside all
of the drawn rectangles and inside the rectangleR. In order to do this, let us notice, that the sum of all the
rectangles:

S = ∑
1≤ j≤2n

[0,A j]× [0,B j]

is a very remarkable figure. Namely, it is a kind of a ’staircase shaped’ poly-line with interior. I will simply
call such a figurea staircase.

An example of a staircase is shown below:

B

A

S

2

The acceptable points are all the points outside setS and within the rectangleR. We are to find the one
with a minimal sum of coordinatesA + B. Obviously the sought point must be a neighbour of some point
p ∈ S, because otherwise, it would not be minimal. Moreover, we only have to consider neighbours of the
vertices of the drawn staircase.

3.3 Algorithm

Our remarks let us construct the following algorithm:

1. for each subset X ⊂ Zn:
1a. compute A = AX and B = BZn\X
1b. put the pair (A,B) to the sequence T

2. sort the sequence T lexicographically
3. iterate through sequence T building the staircase on a stack st
4. for each concave vertex (A,B) of the staircase st consider the point (A+1,B+1) as
a candidate for the solution
5. Among all considered candidates find the point (A,B), which minimizes the sum A+B
and print it

This algorithms needs yet some clarification.
Having sorted the sequenceT of pairs representing rectangles, we do not have to worry foreach rectangle,

where to put it in the constructed staircase, because it willalways fit ’at the end’. There is however a need to
check, whether this new rectangle does not include any otherrectangle as a subset. Fortunately, it is enough
to check (and delete if needed) the most recently added rectangles. This makes the problem of building the
staircase easier — we can store it on a stackst and for each consequent rectangler first pop the stack as long
as its top is a subset ofr and then putr on the stackst.

In the previous subsection we have concluded that it is enough to check only the neighbours of the
vertices of the staircase and find the minimal point among them. However, we can put the simplification
further. Namely, it is sufficient to check only the ’north-east’ neighbour of eachconcave vertex, i.e. a vertex
of the staircase, which is not a vertex of any rectangle, but apoint at which borders of two rectangles intersect.
On the image depicting a sample staircase there are three concave vertices.

This solution has time complexityO(k · logk) = O(n ·2n), wherek = 2n and it is due to the performed
sorting. All other operations together have complexityO(k).

The model solution has been implemented inprog/glo.cpp and prog/glo2.pas .

4 Other solutions

4.1 Slower solutions

prog/glos1.cpp , prog/glos11.pas This is the most brute-force solution I have prepared. It
iterates through all consequent sums of gloves (left and right) possible to take. For every such sum it
iterates through all partitions of the sum into left and right gloves and for each pair(L,R) such that
L + R = sum, checks recursively all possible choices ofL coloured left gloves andR coloured right
gloves from respective drawers in order to find out, whether the pair(L,R) is acceptable.

It prints the first acceptable pair found and quits.

The accurate time complexity of this solution is difficult tostate.

3

prog/glos2.cpp , prog/glos12.pas The same solution asprog/glos1.cpp , but taking ad-
vantage of the fact, that when we check whether a pair(L,R) is acceptable, we do not need to try all
possible choices of coloured gloves, but only try to construct a choice without an equally-coloured pair.

The accurate time complexity of this solution is difficult tostate.

prog/glos3.cpp , prog/glos13.pas The same solution as prog/glos2.cpp , but taking at
once all the left gloves of one colour or all the right gloves of this colour, without trying only some of
them.

Time complexity:O((solA + solB)2∗2n), where(solA,solB) is the correct solution.

prog/glos4.cpp , prog/glos14.pas A slightly modified model solution. The only difference is
that this one draws all rectangles on a bitmap and then finds the minimal unchecked point on it. In
program prog/glos4.cpp the bitmap is dynamically allocated, whereas inprog/glos14.pas it
is a static array.

Time complexity:O(∑X⊂Zn AX ·BZn\X) = O(AZn ·BZn ·2
n).

prog/glos5.cpp , prog/glos15.pas This solution is based on the problem’s author’s idea: We
prepare sequenceT (as in the model solution), then we iterate through all pairsof rectangles, intersect
each pair, for each such point of intersection (A, B) check, whether the point (A+1, B+1) is outside
every rectangle and if so - we make it a candidate for the minimal point. We still use guardians as in
the model solution.

Time complexity:O(23n).

prog/glos6.cpp , prog/glos16.pas This is the model solution without use of a stack. After
creating sequenceT and sorting it, this solution checks for each rectangle, whether it fits inside any
other rectangle and if so — deletes it. Then the sequence withmarked deleted rectangles emulates the
stack used in the model solution to find the minimal acceptable point.

Time complexity:O(22n).

prog/glos7.cpp , prog/glos17.pas This solution is based on the problem’s author’s idea: By
dynamic programming we compute the sequencet[] (described by the problem’s author) and transform
it to the sequenceT [] (which has the same meaning as in the model solution). Then wesieve the
sequenceT [] using a stack and find the minimal point just as in the model solution.

Time complexity:O(n · (maxi{ai}+maxi{bi})). This solution would work for much greatern than 20,
but only for relatively small numbers of gloves (around 106). For big numbers of gloves these programs
enter an infinite loop (in order to follow formal requirements, which do not accept incorrect answers
from slower solutions).

4.2 Incorrect solutions

prog/glob1.cpp The same as the model solution, but without making sure, thatthe found pair(A,B)
satisfiesA≤ ∑i ai andB ≤ ∑i bi, i.e. that there exist enough left or right gloves in respective drawers. In
order to make sure, that the minimal point outside the staircase is found (but not necessarily inside the
rectangle[0,AZn]× [0,BZn]), this program adds two ’guardians’ to the staircase, whichare the rectangles
[0,∞]× [0,0] and[0,0]× [0,∞] and then it considers the neighbour(x+1,y+1) of each concave vertex
(x,y) of the built staircase.

4

A problem with this can occur only in a situation, where one ofthe rectangles[0,A /0]× [0,BZn] or
[0,AZn]× [0,B /0] is a subset of another rectangle, because in such a situationit would be deleted in the
process of building the staircase.

Time complexity:O(n ·2n).

prog/glob2.cpp The same as the model solution, but using 32-bit integers instead of 64-bit ones.

5 Tests

I have prepared the following tests:

• glo0.IN (ε sek.)n = 4, sample test case (from the problem statement)

• glo1ocen.IN (ε sek.)n = 4, a small random test

• glo2ocen.IN (ε sek.)n = 5, a small random test for correctness, shows problem withprog/glob1.cpp

• glo3ocen.IN (ε sek.)n = 7, a medium random test

• glo4ocen.IN (ε sek.)n = 10, a medium schematic test: allai = 1024 and allbi = 123

• glo5ocen.IN (1 sek.)n = 20, a big schematic test with all numbers butn equal to 1000000000

• glo1 -- 9.IN (ε sek.)n = 4, all numbers less or equal to 10; small random tests accepting prog/glos11.pas
and better solutions

• glo10.IN (ε sek.)n = 5, numbers≤ 10; a small random test acceptingprog/glos12.pas and better
solutions

• glo11.IN (ε sek.)n = 15, numbers≤ 20; a random test with mediumn and small other numbers

• glo12a.IN (ε sek.)n = 14, numbers≤ 80; a random test with mediumn and small other numbers

• glo12b.IN (ε sek.)n = 13, numbers≤ 50; a medium random test with many zeros detecting an error
in prog/glob1.cpp

• glo13a.IN (ε sek.)n = 8, numbers≤ 1000; a random test with smalln and medium other numbers

• glo13b.IN (ε sek.)n = 6, numbers≤ 2000; a medium random test with many zeros detecting an error
in prog/glob1.cpp

• glo14a.IN (ε sek.)n = 7, numbers≤ 10000; a random test with smalln and medium other numbers

• glo14b.IN (ε sek.) n = 7, numbers≤ 15000; a medium random test with many zeros detecting an
error in prog/glob1.cpp

• glo15a.IN (ε sek.)n = 10, numbers≤ 500000; a medium random test

• glo15b.IN (ε sek.)n = 10, numbers≤ 100000; a test detecting an error inprog/glob1.cpp

• glo16a.IN (ε sek.)n = 10, a test with consequent powers of 2 from 220 to 229, shuffled

• glo16b.IN (ε sek.)n = 10, numbers≤ 1000000000; a test detecting an error inprog/glob1.cpp

5

• glo17.IN (0.25 sek.)n = 18, a test with consequent powers of 2 from 20 to 217, shuffled

• glo18.IN (1.2 sek.)n = 20, numbers≤ 20000; a random test with bign and medium other numbers

• glo19.IN (1.2 sek.)n = 20, numbers≤ 50000; a random test with bign and medium other numbers

• glo20 -- 22.IN (1.2 sek.)n = 20, numbers≤ 1000000000; big random tests designed for sieving
out the optimal solution

5.1 Statistics

The program prog/gloinwer.cpp produces some statistical data concerning the tests. Here is the expla-
nation of respective coefficients:

• n, max_a = maxi{ai} andmax_b = maxi{bi}

• subsums_a andsubsums_b which describe the number of different numbersAX andBX for all possible
X ⊂ Zn.

• density_a = subsums_a÷max_subsum_a, wheremax_subsum_a = maxX⊂Zn{∑i∈X ai} = ∑i∈Zn ai

• density_b = subsums_b÷max_subsum_b, wheremax_subsum_b = maxX⊂Zn{∑i∈X bi} = ∑i∈Zn bi

5.2 Performance of different solutions

These are different correct solutions along with lists of test, which they pass:

prog/glos1.cpp , prog/glos11.pas 0, 1ocen, 2ocen and 1 — 9.

prog/glos2.cpp , prog/glos12.pas 0, 1ocen, 2ocen and 1 — 10.

prog/glos3.cpp , prog/glos13.pas 0, 1ocen — 4ocen and 1 — 12.

prog/glos4.cpp (with dynamically allocated bitmap) 0, 1ocen — 3ocen and 1 — 13

prog/glos14.pas (with a static bitmap) 0, 1ocen — 3ocen and 1 — 11.

prog/glos5.cpp , prog/glos15.pas 0, 1ocen — 3ocen, 1 — 10 and 13 — 14.

prog/glos6.cpp , prog/glos16.pas 0, 1ocen — 4ocen, 1 — 10 and 13 — 16.

prog/glos7.cpp , prog/glos17.pas 0, 1ocen — 4ocen, 1 — 15 and 17 — 19.

The incorrect solutionprog/glob1.cpp does not pass any of the following tests: 2ocen, 1 — 11, 12b,
13b, 14b, 15b, 16b.

The incorrect solutionprog/glob2.cpp does not pass any of the following tests: 5ocen, 20 — 22.

6 Limits

I have set the numbers range in the problem to 109 in order to make use of 64-bit integers necessary, but not
obvious.

I have set the memory limit to 64 MB, because the model solution in Pascal prog/glo2.pas needs
around 50 MB.

I have set the time limit to 4 seconds, which was 3.3 times morethan the run time of the model solution
on my computer (1.6 GHz).

6

7 Changes in the problem statement

• Generalization forn ≤ 20 colours of gloves.

• Changes of limits.

8 Remarks

It is quite easy to devise and implement a correct brute-force solution for this problem. The optimal one is
more difficult to find, but if found, it does not involve much trouble in implementation. On the whole, I think,
that this would be rather an easy problem for international contestants.

7

