
BALTIC OLYMPIAD IN INFORMATICS

Güstrow, Germany
April 24 – 28, 2007

Page 1 of 2 ENG escape

Escape
A group of war prisoners are trying to escape from a prison. They have thoroughly planned the

escape from the prison itself, and after that they hope to find shelter in a nearby village. However,
the village (marked as B, see picture below) and the prison (marked as A) are separated by a canyon
which is also guarded by soldiers. These soldiers sit in their pickets and rarely walk; the range of view
of each soldier is limited to exactly 100 meters. Thus, depending on the locations of soldiers, it may
be possible to pass the canyon safely, keeping the distance to the closest soldier strictly larger than
100 meters at any moment.

You are to write a program which, given the width and the length of the canyon and the coordi-
nates of every soldier in the canyon, and assuming that soldiers do not change their locations, first
determines whether prisoners can pass the canyon unnoticed. If this is impossible then the prisoners
(having seen enough violence) would like to know the minimum number of soldiers that have to be
eliminated in order to pass the canyon safely. A soldier may be eliminated regardless of whether he is
visible to any other soldier or not.

Input

The input is read from a text file named escape.in. The first line contains three integers L, W ,
and N – the length and the width of the canyon, and the number of soldiers, respectively. Each of
the following N lines contains a pair of integers Xi and Yi – the coordinates of i-th soldier in the



BALTIC OLYMPIAD IN INFORMATICS

Güstrow, Germany
April 24 – 28, 2007

Page 2 of 2 ENG escape

canyon (0 ≤ Xi ≤ L, 0 ≤ Yi ≤ W ). The coordinates are given in meters, relative to the canyon: the
southwestern corner of the canyon has coordinates (0, 0), and the northeastern corner of the canyon
has coordinates (L,W ), as seen in the picture above.

Note that passing the canyon may start at coordinate (0, ys) for any 0 ≤ ys ≤ W and end at
coordinate (L, ye) for any 0 ≤ ye ≤W . Neither ys nor ye need to be integer.

Output

The output is written into a text file named escape.out. In the first and only line of the output file
the program should print the minimum number of soldiers that have to be eliminated in order for the
prisoners to pass the canyon safely. If the prisoners can escape without any elimination, the program
should print 0 (zero).

Example

escape.in escape.out
130 340 5
10 50
130 130
70 170
0 180
60 260

1

Constraints

1 ≤W ≤ 50,000 1 ≤ L ≤ 50,000 1 ≤ N ≤ 250

Grading

Your program will receive partial credits if it can only determine whether the prisoners need to elim-
inate any guard at all in order to escape. For this, several test runs will be grouped to one test group.
You will receive 30% of a test groups’s credits in case you determine for each test run correctly
whether any guards need to be eliminated (0 means no guards need to be eliminated, any integer > 0
means that any number of guards need to be eliminated). You will receive 100% of a test group’s
credits in case you determine for each test run correctly how many guards need to be eliminated for
the prisoners’ escape.



BALTIC OLYMPIAD IN INFORMATICS

Güstrow, Germany
April 24 – 28, 2007

Page 1 of 2 ENG sorting

Ranklist Sorting
You are given the scores of several players in a competition. Your task is to create a ranklist of the

players, sorted in decreasing order by score.

Unfortunately, the data structure used for the list of players supports only one operation, which
moves a player from position i to position j without changing the relative order of other players. If
i > j, the positions of players at positions between j and i − 1 increase by 1, otherwise if i < j the
positions of players at positions between i + 1 and j decrease by 1.

This operation takes i steps to locate the player to be moved, and j steps to locate the position
where he or she is moved to, so the overall cost of moving a player from position i to position j is
i + j. Here, positions are numbered starting with 1.

Determine a sequence of moves to create the ranklist such that the sum of the costs of the moves is
minimized.

Input

The input is read from a text file named sorting.in . The first line contains n (2 ≤ n ≤ 1000),
the number of players. Each of the following n lines contains one non-negative integer si (0 ≤ si ≤
1,000,000), the scores of the players in the current order. You may assume that all scores are distinct.

Output

The output is written into a text file named sorting.out . In the first line of the output print the
number of moves used to create the ranklist. The following lines should specify the moves in the
order in which they are applied. Each move should be described by a line containing two integers i
and j, which means that the player at position i is moved to position j. The numbers i and j must be
separated by a single space.

Example

sorting.in sorting.out
5
20
30
5
15
10

2
2 1
3 5



BALTIC OLYMPIAD IN INFORMATICS

Güstrow, Germany
April 24 – 28, 2007

Page 2 of 2 ENG sorting

Grading

30% of the test cases have values of n ≤ 10



BALTIC OLYMPIAD IN INFORMATICS

Güstrow, Germany
April 24 – 28, 2007

Page 1 of 1 ENG sound

The Sound of Silence
In digital recording, sound is described by a sequence of numbers representing the air pressure,

measured at a rapid rate with a fixed time interval between successive measurements. Each value in
the sequence is called asample.

An important step in many voice-processing tasks is breaking the recorded sound into chunks of
non-silence separated by silence. To avoid accidentally breaking the recording into too few or too
many pieces, the silence is often defined as a sequence ofm samples where the difference between
the lowest and the highest value does not exceed a certain tresholdc.

Write a program to detect silence in a given recording ofn samples according to the given parameter
valuesm andc.

Input

The input is read from a text file namedsound.in .

The first line of the file contains three integers:n (1 ≤ n ≤ 1,000,000), the number of samples in
the recording;m (1 ≤ m ≤ 10,000), the required length of the silence; andc (0 ≤ c ≤ 10,000), the
maximal noise level allowed within silence.

The second line of the file containsn integersai (0 ≤ ai ≤ 1,000,000 for 1 ≤ i ≤ n), separated
by single spaces: the samples in the recording.

Output

The output is written into a text file namedsound.out .

The file should list all values ofi such thatmax(a[i . . . i + m− 1])−min(a[i . . . i + m− 1]) ≤ c.
The values should be listed in increasing order, each on a separate line.

If there is no silence in the input file, writeNONEon the first and only line of the output file.

Example

sound.in sound.out
7 2 0
0 1 1 2 3 2 2

2
6


