
BOI 2005 Day 1
 Camouflaged Camp
Pasvalys Language: ENG
Lithuania

7.5.2005 Page 1 of 2 CAMP

Camouflaged camp (Lithuania)

TASK

Squad commander is looking for a location to build a camouflaged camp of a certain size.
He has a digital topographic map of the area, which is a rectangular grid with every
element defining the altitude at a certain
coordinate. Coordinates of any point on the map
are identified by the row and the column in the
table.

The camp location should be a rectangle fully
located within the map area and satisfy certain
characteristics. Each characteristic consists of two
identical adjacent rectangular areas and the
requirement for their altitudes. It is defined by

• location, i.e. the coordinates of the top-
left corner of the first (i.e. the left or the
top) rectangular area; The coordinates are
given in respect of the camp area.

• size (length and width) of the first (and the second because they are equal)
rectangular areas;

• rectangle arrangement flag, 0 indicates horizontal arrangement of the
rectangular areas (i.e. areas have common vertical side), while 1 – vertical
arrangement (i.e. areas have common horizontal side);

• altitude flag, 0 indicates that the average altitude of the first (i.e. the left or the
top) rectangular area should be strictly less (<) than the average altitude of the
second. 1 indicates the opposite (≥) situation.

2 2 2 2 2 2
2 6 6 4 3 2

3 5 8 7 7 4

4 6 8 9 8 6
5 7 8 8 8 7

Digital topographic 5x6 map
Camp of size 3×5 at position (3,2)

2 2 2 2 2 2
2 6 6 4 3 2

3 5 8 7 7 4
4 6 8 9 8 6

5 7 8 8 8 7

Characteristic A:
Location – (1, 1)
Size – (1, 3)
Arrangement flag: 1
Altitude flag: 0

The selected location satisfies
characteristic A.

2 2 2 2 2 2
2 6 6 4 3 2

3 5 8 7 7 4
4 6 8 9 8 6
5 7 8 8 8 7

Characteristic B:
Location – (2, 2)
Size – (2, 2)
Arrangement flag: 0
Altitude flag: 0

The selected location does not
satisfy characteristic B.

BOI 2005 Day 1
 Camouflaged Camp
Pasvalys Language: ENG
Lithuania

7.5.2005 Page 2 of 2 CAMP

The camp location satisfies the characteristic if the altitude requirement is satisfied.

Write a program which given the topographic map of the area and the characteristics
would find the best (the one that satisfies most characteristics) location for building the
camouflaged camp. In case of several solutions, output any of them.

INPUT

The input file name is CAMP.IN The first line contains two integers R and C
(2≤R,C≤1000). They correspond to the number of rows and columns in the topographic
map. The following R lines with C nonnegative integer numbers in each of them describe
the topographic map. The altitude does not exceed 255 at any coordinate.

Two integer numbers L (number of rows) and W (number of columns) (1≤L,W≤1000;
L≤R; W≤C) defining the size of the camp are written in the following line.

The next line contains one integer H (1≤H≤1000) – the number of characteristics.
Finally, the following H lines describe characteristics. Each of them contains 6 integers:
coordinates of the characteristic’s top-left corner, size of the first rectangular area, the
arrangement and the altitude flags. All characteristics fit within the camp.

OUTPUT

The first line of the output file CAMP.OUT should contain two integers – the coordinates
of top-left corner of camp location.

EXAMPLES

INPUT OUTPUT COMMENT
5 6
2 2 2 2 2 2
2 6 6 4 3 2
3 5 8 7 7 4
4 6 8 9 8 6
5 7 8 8 8 7
3 5
3
1 1 1 3 1 0
2 2 2 2 0 0
2 4 1 1 1 1

3 1 Location (3, 1) satisfies all three
characteristics

BOI 2005 Day 1
 Magic Parenthesis
Pasvalys Language: ENG
Lithuania

2005.05.07 Page 1 of 2 LISP

Magic Parenthesis (Finland)

TASK

In the LISP programming language everything is written inside balanced parentheses
(LIKE THIS). This means that LISP code sometimes contains long stretches
")))...)" of closing parentheses. It is very tedious for the LISP programmer to get the
number of these closing parentheses ')' to correspond exactly to the number of opening
parentheses '('.

To prevent such syntax errors, some LISP dialects introduce a magic closing parenthesis
']' which substitutes one or more closing parentheses ')' as needed to properly balance
the opening parentheses '('. But then the LISP compiler must calculate how many closing
parentheses ')' each magic parenthesis ']' really substitutes. How?

Write a program which is given a string of opening, closing, and magic parentheses, and
which calculates for each occurrence of the magic parenthesis the number of opening
parentheses it corresponds to. In case of multiple solutions, the program should find any
one of them.

INPUT

The input file name is LISP.IN. The first line consists of two integers 0 ≤ N ≤ 10 000
000 and 0 ≤ Μ ≤ 5 000 000 separated by a space. The first number N is the length of the
input string. The second number M is the number of magic closing parentheses in the
string. The rest of the input file starts on the second line and is a string of length N
consisting of characters '(', ')' and ']'. The character ']' occurs exactly M ≤ N times in
this string. This string is divided into lines of at most 72 characters each for readability.

OUTPUT

The output file name is LISP.OUT. The first line consists of an integer '0' or '1'.

The number '0' means that the input cannot be balanced. (For example, the string which
consists of just a single magic parenthesis "]" obviously cannot be balanced.) In this case
there is no more output.

The number '1' means that the input can be balanced. In this the output continues with the
following M extra lines.

The 1st of these extra lines consists of the number C1 ≥ 1 of closing parentheses ')' the
1st magic parenthesis ']' in the input substitutes to. The 2nd extra line consists of the
corresponding number C2 ≥ 1 for the 2nd ']' in the input, and so on.

BOI 2005 Day 1
 Magic Parenthesis
Pasvalys Language: ENG
Lithuania

2005.05.07 Page 2 of 2 LISP

If there are many ways in which the given string can be balanced, then your program may
output any one of them.

EXAMPLE
The input on the left describes a string with 8 characters, of which 2 are magic. The
output on the right shows one way of balancing this input: the first magic parenthesis
corresponds to 3 opening parentheses, and the second magic parenthesis corresponds to 1
opening parenthesis. And indeed, the magic-free string ((((())))) is properly
balanced, where the closing parentheses corresponding to the magic parentheses are
underlined.

INPUT OUTPUT
8 2 1
(((((])] 3

1

BOI 2005 Day 1
 Maze
Pasvalys Language: ENG
Lithuania

7.5.2005 Page 1 of 2 MAZE

Maze (Lithuania)

Consider the following maze made of equilateral triangles:

Each vertex is described by two coordinates x and y as in the picture. Some of the edges
have a white or a black circle on them. There are two major rules that control movement
within the maze:

§ it is only allowed to pass edges with circles on them.
§ while walking through the maze it is obligatory to alternate white and black

circles; i.e. it is only allowed to pass an edge with white circle if the last circle
passed was black and vice versa. It is allowed to pass an edge with either black or
white circle on it during the first move.

TASK

Write a program to find the length of the shortest path from the entrance point to the exit
in the maze. The length of the path is defined as the number of edges (or circles) passed.
You may assume that such path always exists.

INPUT

The input file name is MAZE.IN The first line contains two integers W and H which are
the width and the height of the maze respectively (1 ≤ W, H ≤ 500). The second line
consists of four integer values: X1 Y1 X2 Y2 (0 ≤ X1, X2 ≤ W; 0 ≤ Y1, Y2 ≤ H). (X1, Y1) are
the coordinates of the entry point in the maze and (X2, Y2) are the exit coordinates.

The next 2H+1 lines provide the description of the edges: odd lines (3rd, 5th, etc) describe
horizontal edges, and even lines (4th, 6th, etc) describe non-horizontal ones. Each line
consists of a string of characters n, w and b, where n means, that there is no circle on the
edge, and w or b means that there is white or black circle on the edge respectively. There
are no spaces between these characters. Naturally, odd lines consist of exactly W
characters, and even lines consist of exactly 2W+1 characters.

BOI 2005 Day 1
 Maze
Pasvalys Language: ENG
Lithuania

7.5.2005 Page 2 of 2 MAZE

OUTPUT

Your program should output a single integer (the length of the shortest path from entrance
point to the exit in the maze) in the first (and the only) line of the file MAZE.OUT.

EXAMPLES

INPUT OUTPUT COMMENTS
2 1
0 0 2 1
bb
nwwnw
bn

6 A simple maze. One possible shortest path is
this:

(0, 0) à (1, 0) à (0, 1) à (1, 1) à (1, 0) à
(2, 0) à (2, 1)

Here is the illustration of the maze and the
shortest path:

INPUT OUTPUT COMMENTS
5 4
0 2 5 2
nnbnn
nnnwwbwnnnn
nbbbn
nnwbwwbwwnn
bwwww
nnbwbbwwbnn
nwwwn
nnnnbwbbnnn
nnwnn

22 This is the description of the maze given in the
picture on the first page. The shortest path is
this:

(0, 2) à (1, 2) à (1, 1) à (2, 1) à (2, 0) à
(3, 0) à (3, 1) à (3, 2) à (4, 1) à (3, 1) à
(3, 0) à (2, 0) à (2, 1) à (1, 1) à (1, 2) à
(1, 3) à (2, 3) à (2, 4) à (3, 4) à (3, 3) à
(4, 3) à (4, 2) à (5, 2)

(Length: 22)

