
1.3 Solution

This is a logical puzzle about equalities (friends) and inequalities (enemies).
The story tells us that the relation �friend of� is symmetric: two gangsters are friends (of

each other). Then �friend of� can also be assumed re�exive: a gangster who is not a friend of
himself cannot be a member of any gang, and this leads to the minimum answer K = 0 which
we must try to improve. Ethics code 1 means that �friend of� is transitive. Hence �friend of� is
an equality relation. It follows that a gang is an equivalence class of this relation.

These classes can be maintained as the well-known Merge-Find data structure [1, Chap-
ter 21.3]. Initially each gangster is alone in his own class. Each fact F p q merges the classes
for p and q.

Such merge operations include not only those given explicitly as input but also those that
are given implicitly by ethics code 2 and the enemy facts E p q given as input: if p and q are
enemies, and q and r are also enemies, then p and r are friends. Again, the story tells us that
�enemy of� is symmetric.

These merge operations are exactly those that must be performed to represent the input.
Hence the output K is the number of still distinct classes in the resulting data structure.
However, we must also satisfy each fact E p q: if p and q end up in the same class, then the
input is inconsistent, since p and q should be both friends and enemies, and the story tells
us that these two relations are mutually exclusive. Hence the correct output is the minimum
answer K = 0 in this case.

A rough complexity analysis is as follows. The algorithm needs O(M) space: the Merge-Find
structure for the gangster, and a designated enemy for every gangster. This designated enemy
is used for maintaining the enemy information e�ciently: by ethics code 2, all my enemies are
friends of each other, so it su�ces to remember the �rst of my enemies, and merge all later
enemies with him. Initially nobody has a designated enemy.

The following algorithm needs O(M +Nα(M)) time, where α is the inverse of Ackermann's
function [1, Chapter 21.4].

First, it takes O(M) steps to initialize the data structures. Then it processes each of the N
facts, one by one, as follows.

A friend fact F p q is processed by merging the classes of p and q.
An enemy fact E p q is in turn processed as follows. Consider p �rst. If p has no designated

enemy r yet, then make q the designated enemy of p. Otherwise merge the classes of q and r.
The other gangster q is processed symmetrically.

This generates less than 2N merge operations into a Merge-Find structure of M elements,
and this takes O(Nα(M)) total time.

Then we can check that each enemy fact E p q is satis�ed by checking that no gangster is
in the same class as his designated enemy (if any). If such a gangster does exist, then K = 0.

Otherwise the correct answer K is the number of di�erent classes. It can be computed by
counting the number of those gangster nodes in the Merge-Find structure that are the roots of
the trees representing the classes.

In either case, K can be computed in O(M) steps.
Hence this problem can be solved with linear memory with respect to M and almost linear

time with respect to N , so their upper bounds could be large in order to separate the optimal
solutions from the slower ones.

2



References

[1] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. Introduction to Algorithms,
second ed. The MIT Press, 2001.

3


