
Facts about the game 
 
There exist exactly 18368 legal positions, which gives arise to 36736 states of the game (for 
each position either one the player may be at turn). 240 of these 36736 states are “mate” 
states; that is, the player to move has no legal move. 16560 states are winning for one of the 
players. The longest forced win are 5 moves (that is, 9 half-moves, or plys). 
 
Most positions which has a forced win have only one single move out of more than a hundred 
possible moves which is correct. In other words, there is no way one can win the game against 
perfect play be just guessing moves. 
 
Some examples: 
 
----------------------------------------------- 
#.xx 
#... 
##.* 
.*** 
 
Player * to move - * wins in 5 move(s) 
 
There are 117 available moves: 
  1: * wins in 4 move(s) 
 80: draw 
  4: # wins in 5 move(s) 
  1: # wins in 4 move(s) 
  2: # wins in 3 move(s) 
  1: # wins in 2 move(s) 
 28: # wins in 1 move(s) 
----------------------------------------------- 
#.xx 
#... 
##.* 
.*** 
 
Player # to move - # wins in 1 move(s) 
 
There are 169 available moves: 
  2: # wins in 0 move(s) 
136: draw 
  1: * wins in 5 move(s) 
  1: * wins in 3 move(s) 
 29: * wins in 1 move(s) 
----------------------------------------------- 
.### 
*#.x 
***. 
x... 
 
Player * to move - * wins in 3 move(s) 
 
There are 117 available moves: 
  1: * wins in 2 move(s) 
 79: draw 
  5: # wins in 5 move(s) 
  3: # wins in 3 move(s) 
 29: # wins in 1 move(s) 



Solution 
 
This problem can be solved by retrograde analyze. The solution can be split up into several 
steps: 
 
Enumerate the states 
 
Although there are 36736 states, it’s unnecessary to actually find a 1-1 mapping between the 
integers 0..36735 and those states. It’s easier to realize that there are 48 positions in the 4x4 
grid for each L, and for the neutral pieces there are 8*7/2 remaining combinations. Thus we 
have 2*48*48*8*7/2 = 129024 “states” (of which most are invalid, but that’s no problem). 
 
Build the graph 
 
It’s not actually necessary to build the graph explicitly, but it makes the solution easier and 
more structured. This can be done by looping through all 129024 states above, and for each 
valid state generate all possible moves. Since we’re about to do retrograde analyze, it’s 
important that the edges in the graph go backwards; that is, if there’s a legal move taking us 
from state A to state B, we add an edge in the graph from B to A. We also need to know how 
many legal moves there are from a state (note that this does not equal the number of edges 
from the state, since those edges are “backward” edges while the count is for “forward” edges 
- we don’t need these edges, just the count). 
  
Process the states 
 
During the process of building the graph, all “mate” positions (positions with no moves) are 
found as well. These positions are marked as a “win” for one of the players and put in a queue. 
Also, we say that a state y is preceding a state x if there exist a legal move from y that will 
result in the state x. 
 
Now, we process the queue and for each state x in the queue we can deduce one of the 
following: 
 

• If the player to move in x is losing, this means that all states preceding x are winning 
states for the other player. Thus we mark all these states as a win for the other player, 
and add them to the queue. 

• If the player to move in x is winning, then let y be a position preceding x. The player to 
move in y obviously don’t want to play the move reaching x, so this reduces the 
number of non-losing moves. That is, we decrease the “legal moves” counter in y. But 
if this counter reaches 0, then there are no moves from y that will avoid a loss. Thus we 
mark y as a losing position for the player to move in y, and we add y to the queue to be 
processed. 

 
When the whole queue has been processed, we have determined all winning and losing 
positions in the game. Finding out which move is the best one from a certain position is a 
simple matter of checking the evaluation of the position after each valid move from the given 
position and choose the one which is best. 



About the test data 
 
There are 10 test cases with different difficulty. Six of the cases are winning positions, which 
requires “thinking ahead” 1, 2, 3, 3, 4 and 5 moves, respectively. Three of the cases are losing 
positions, at depth 1, 2 and 4 moves, and one position is a draw. 
 
A simple program simply finding an immediate win would solve one test case. 
 
A naïve min-max search should be able to solve at least 4 cases in a reasonable amount of time 
(15 seconds). 
 
An optimized min-max search should solve at least 6 cases. 
 
It might be possible to solve all cases using min-max combined with dynamic programming, 
but this is more tricky than it first appears (what to do when, in the recursion, you encounter a 
position already on the stack?) and certainly harder than the suggested solution. 
 
Using retrograde analyze, starting from endposition and working backwards, solves all cases. 
The sample solution needs about 4 seconds on an AMD 1200 MHz to do a complete 
evaluation of the game. 
 
 
All input have a unique solution! Thus only a filecompare is required to verify the correct 
answer. 
 
 
Important: A participant should not score for the “losing” or “draw” test cases unless at 
least half (3) of the cases with winning positions are correctly solved!! Otherwise a 
program with a single printf statement could “solve” 3 of the cases! This is not mentioned in 
the current version of the problem statement. 
 
 
 
 
Task and solution are proposed by Jimmy Mårdell (jimmy@yarin.se) 
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